-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLogicalProblem.py
170 lines (146 loc) · 8.09 KB
/
LogicalProblem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import random
import string
import copy
from Variable import Variable
from ResolutionTree import ResolutionTree
from ResolutionNode import ResolutionNode
from Connector import Connector
class LogicalProblem():
'''
Class to hold a single logical problem and functions that will act on it
num_variables: user input: number of variables to appear in problem
variables: list of variables
num_premises: number of premises
premises: list of premises by clause
connector: list of premises by connectors
num_complexity: determines how often to branch
validity: valid/invalid flag
resolution_tree: holds tree for problem
'''
def __init__(self, num_variables, num_premises, num_complexity, validity):
possible_variables = list(string.ascii_uppercase)
self.num_variables = num_variables
self.variables = []
for i in range(num_variables):
self.variables.append(Variable(possible_variables[i], True))
self.num_premises = num_premises
self.premises = []
self.num_possible_premises = 0
self.connector = []
self.num_complexity = num_complexity
self.validity = validity
self.resolution_tree = ResolutionTree()
def getTree(self):
return self.resolution_tree
def getConnectors(self):
return self.connector
#Main function to generate random logical problem
def generate_random(self):
used_vars = [] # List to keep track of what variables we have used so far in this tree
num_splits_left = 2**self.num_complexity - 1
### ERROR CHECKING
if self.num_variables < self.num_complexity:
print("Too few variables for this complexity.")
return
if self.validity:
self.resolution_tree.addNode([], (-1, -1), -1, 0) # If valid then we start with an empty node
else: # If not valid then we must generate a startin node with variables in it
if self.num_variables == self.num_complexity:
print("Too few variables for this complexity for a non-valid problem.")
return
init_var = random.sample(self.variables, random.randint(max(1, self.num_variables - num_splits_left), self.num_variables - self.num_complexity)) # Sample of some random variables
used_vars = copy.deepcopy(init_var) # Note which variables are used
for v in init_var: # Choose them at random to be negations
if random.random() < 0.5:
v.truthValue = not v.truthValue
self.resolution_tree.addNode(init_var, (-1, -1), -1, 0) # Start the tree with a node of our random variables
### PROBLEM GENERATION
all_var_used = False
# Temporarily set the number of levels of the tree to the complexity
# Loop and generate new branches until we get num_complexity levels
while self.resolution_tree.numLevels() <= self.num_complexity or not all_var_used:
# Loop through every node in the 'tree'
for i in range(self.resolution_tree.numLevels()):
for j in range(self.resolution_tree.levelSize(i)):
current_node = self.resolution_tree.getNode(i,j) # Just to say what the current node is
if len(used_vars) == len(self.variables):
all_var_used = True
#If node has no parents, check whether to split
if current_node.getParent()[0] == -1 and random.random() < 0.5 and i < self.num_complexity:
possibleVar = [] # Possible variables to split on
for var in self.variables: # Get a list of variables that we could split with
in_node = False
#Check whether to choose unused variables to split on
if num_splits_left <= (self.num_variables - len(used_vars)):
for v in range(len(used_vars)): # Loop through all the used variables
if used_vars[v].getVariable() == var.getVariable():
in_node = True
if not in_node:
possibleVar.append(var)
else: # If we do have enough splits left for the total number of variables then we can just split on any variable not in the node we are splitting off of
for v in range(len(current_node.getVariables())):
if current_node.getVariables()[v].getVariable() == var.getVariable(): # If variable in current node raise flag
in_node = True
if not in_node: # If the variable is not in the current node then we can possibly split off of it
possibleVar.append(var)
if len(possibleVar) == 0: # If the node already uses all the variables don't try to split
continue
random_var = random.choice(possibleVar) # Pick a random variable to add to the split onto the next level
if random_var not in used_vars:
used_vars.append(random_var)
next_vars_true = []
next_vars_false = []
for var in current_node.getVariables():
if random.random() < 0.5:
next_vars_true.append(var)
if random.random() < 0.5: # Maybe this one changes
next_vars_false.append(var)
else:
next_vars_false.append(var)
if random.random() < 0.5: # Maybe this one changes
next_vars_true.append(var)
next_vars_true.append(Variable(random_var.getVariable(), True))
next_vars_false.append(Variable(random_var.getVariable(), False))
self.resolution_tree.addNode(next_vars_true, (-1,-1), j, i + 1) # Initialize new nodes
self.resolution_tree.addNode(next_vars_false, (-1,-1), j, i + 1)
num_splits_left -= 1
#update parents of current node
current_node.changeParent((self.resolution_tree.levelSize(i + 1) - 2, self.resolution_tree.levelSize(i + 1) - 1))
def getNumPossiblePremises(self):
n = 0
for level in self.resolution_tree.tree_nodes:
for node in level:
if node.getParent() == (-1,-1):
n += 1
return n
#main function to combine nodes into premises
def generatePremises(self, num_premises):
self.premises = []
self.num_premises = num_premises
elders = []
#append parents to list
for level in self.resolution_tree.tree_nodes:
for node in level:
if node.getParent() == (-1,-1):
elders.append([copy.deepcopy(node)])
# TODO: Negate premise
while True:
#one of elders will be premise
if len(elders) <= self.num_premises + 1:
break
#randomly select twot clauses to combine
ind_sublist = random.sample(range(0,len(elders)), 2)
sublist = elders.pop(ind_sublist[0]) + elders.pop(ind_sublist[1] - 1)
elders.append(sublist)
self.premises = elders
random.shuffle(self.premises)
#immediately generate connectors for premises
self.generateConnectors()
# function to generate premise connectors
def generateConnectors(self):
self.connector = []
for prem in self.premises:
self.connector.append(Connector(copy.deepcopy(prem), True))
#last element of connector list is conclusion so negate
self.connector[-1].negateStatement()
return