-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_valid_split.py
38 lines (34 loc) · 1.23 KB
/
train_valid_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
"""
This script is used for splitting the entire data-set into training and validation parts.
"""
import os
from random import shuffle
homedir = os.getcwd()
oflowdir = os.path.join(homedir, "OFlows")
class_list = os.listdir(oflowdir)
finaldir = os.path.join(homedir, "Training_data")
os.mkdir(finaldir)
train_dir = os.path.join(finaldir, "train")
val_dir = os.path.join(finaldir, "val")
os.mkdir(train_dir)
os.mkdir(val_dir)
for class_id in class_list:
class_dir = os.path.join(oflowdir, class_id)
videos = os.listdir(class_dir)
shuffle(videos)
train = videos[0:int(len(videos) * 0.8)]
val = list(set(videos) - set(train))
os.mkdir(os.path.join(train_dir, class_id))
os.mkdir(os.path.join(val_dir, class_id))
for train_video in train:
source = os.path.join(class_dir, train_video)
destination = os.path.join(train_dir, os.path.join(class_id, train_video))
print(source)
print(destination)
os.rename(src=source, dst=destination)
for val_video in val:
source = os.path.join(class_dir, val_video)
destination = os.path.join(val_dir, os.path.join(class_id, val_video))
print(source)
print(destination)
os.rename(src=source, dst=destination)