-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtoolbox.py
310 lines (247 loc) · 10.6 KB
/
toolbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# from audioread.exceptions import NoBackendError
from engine import VC, Utterance
from gui import GUI
from pathlib import Path
import utils
from utils.hparams import cfg
from time import perf_counter as timer
import traceback
import numpy as np
import torch
import os
import sys
from pathlib import Path
from collections import defaultdict
# Maximum of generated wavs to keep on memory
MAX_WAVS = 15
MAX_TARGET_SAMPLES = 10
MAX_LOADED_SAMPLES = 100
class Toolbox:
def __init__(self, datasets_root, seed):
sys.excepthook = self.excepthook
self.seed = seed
self.datasets_root = datasets_root
self.recognized_datasets = []
self.utterances = set()
self.current_generated = (None, None, None, None) # speaker_name, mel, breaks, wav
self.speaker_filepathes = defaultdict(set)
self.audio_ext = {'.wav', '.flac', '.mp3'}
for datafolder in utils.data.get_subdirs(datasets_root):
self.load_dataset_info(os.path.join(self.datasets_root, datafolder))
self.engine = None # type: VC
self.current_src_utt = None
self.current_tgt_utts = None
self.current_tgt_spk = None
self.loaded_utts = []
self.conv_utts_list = []
self.conv_utts_idlist = []
self.self_record_count = 0
self.trim_silences = True
# Initialize the events and the interface
self.ui = GUI()
self.reset_ui(seed)
self.setup_events()
self.ui.start()
def excepthook(self, exc_type, exc_value, exc_tb):
traceback.print_exception(exc_type, exc_value, exc_tb)
self.ui.log("Exception: %s" % exc_value)
def setup_events(self):
# Dataset, speaker and utterance selection
self.ui.browser_load_button.clicked.connect(lambda: self.load_from_browser())
random_func = lambda level: lambda: self.ui.populate_browser(self.datasets_root, self.recognized_datasets, level)
self.ui.random_dataset_button.clicked.connect(random_func(0))
self.ui.random_speaker_button.clicked.connect(random_func(1))
self.ui.random_utterance_button.clicked.connect(random_func(2))
self.ui.dataset_box.currentIndexChanged.connect(random_func(1))
self.ui.src_spk_box.currentIndexChanged.connect(random_func(2))
self.ui.tgt_spk_box.currentIndexChanged.connect(random_func(2))
# Utterance selection
func = lambda: self.load_from_browser(self.ui.browse_file())
self.ui.browser_browse_button.clicked.connect(func)
func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current")
self.ui.utterance_history.currentIndexChanged.connect(func)
func = lambda: self.ui.play(self.ui.selected_utterance.wav, cfg.data.sample_rate)
self.ui.play_button.clicked.connect(func)
self.ui.stop_button.clicked.connect(self.ui.stop)
self.ui.record_button.clicked.connect(self.record)
# Audio
self.ui.setup_audio_devices(cfg.data.sample_rate)
# Wav playback & save
func = lambda: self.replay_last_wav()
self.ui.replay_wav_button.clicked.connect(func)
func = lambda: self.export_current_wave()
self.ui.export_wav_button.clicked.connect(func)
self.ui.wavs_cb.currentIndexChanged.connect(self.set_current_utt)
# Generation
func = lambda: self.convert() or self.vocode()
self.ui.generate_button.clicked.connect(func)
self.ui.synthesize_button.clicked.connect(self.convert)
self.ui.vocode_button.clicked.connect(self.vocode)
self.ui.random_seed_checkbox.clicked.connect(self.update_seed_textbox)
# UMAP legend
self.ui.clear_button.clicked.connect(self.clear_utterances)
def set_current_utt(self, index):
self.current_src_utt = self.conv_utts_list[index]
def export_current_wave(self):
self.ui.save_audio_file(self.current_src_utt, cfg.data.sample_rate)
def replay_last_wav(self):
self.ui.play(self.current_src_utt, cfg.data.sample_rate)
def reset_ui(self, seed):
self.recognized_datasets = [p for p in self.datasets_root.iterdir() if p.is_dir()]
self.ui.populate_browser(self.datasets_root, self.recognized_datasets, 0, True)
self.ui.populate_gen_options(seed, self.trim_silences)
def load_from_browser(self, fpath=None):
if fpath is None:
fpath = Path(self.datasets_root, self.ui.current_dataset_name, self.ui.current_src_spk, self.ui.current_utterance_name)
name = str(fpath.relative_to(self.datasets_root))
speaker_name = self.ui.current_dataset_name + '_' + self.ui.current_src_spk
# Select the next utterance
if self.ui.auto_next_checkbox.isChecked():
self.ui.browser_select_next()
elif fpath == "":
return
else:
name = fpath.name
speaker_name = fpath.parent.name
# Get the wav from the disk. We take the wav with the vocoder/synthesizer format for
# playback, so as to have a fair comparison with the generated audio
wav = utils.load_wav(str(fpath))
self.ui.log("Loaded %s" % name)
self.add_real_utterance(wav, cfg.data.sample_rate, name, speaker_name)
def record(self):
wav = self.ui.record_one(cfg.data.sample_rate, 5)
if wav is None:
return
self.ui.play(wav, cfg.data.sample_rate)
self.self_record_count += 1
speaker_name = "user_recorder"
name = f"{speaker_name}_{self.self_record_count}"
self.add_real_utterance(wav, cfg.data.sample_rate, name, speaker_name)
def add_real_utterance(self, wav, sr, path, spk_name):
if self.engine is None:
self.init_engine()
# Compute the mel spectrogram
mel = self.engine._get_mel(torch.from_numpy(wav))
self.ui.draw_mel(mel.squeeze(0), "current")
# Compute the embedding
embed = self.engine._get_spk_emb([wav], sr=sr)
# Add the utterance
utterance = Utterance(
wav=wav, sr=sr,
path=path, spk_name=spk_name,
mel=mel.cpu().numpy().squeeze(0), spk_emb=embed.squeeze(0)
)
if utterance not in self.utterances:
self.utterances.add(utterance)
self.ui.register_utterance(utterance)
# Plot it
# self.ui.draw_embed(embed, Path(path).stem, "current")
self.ui.draw_umap_projections(self.utterances)
def clear_utterances(self):
self.reset_ui(self.seed)
self.utterances.clear()
self.ui.draw_umap_projections(self.utterances)
def convert(self):
self.ui.log("Converting from source to target...")
self.ui.set_loading(1)
# Update the synthesizer random seed
if self.ui.random_seed_checkbox.isChecked():
seed = int(self.ui.seed_textbox.text())
self.ui.populate_gen_options(seed, self.trim_silences)
else:
seed = None
tgt_spk = self.ui.current_tgt_spk
# Synthesize the spectrogram
if self.engine is None:
self.init_engine()
src_wav = self.ui.selected_utterance.wav
if self.current_tgt_spk is None or self.current_tgt_spk != tgt_spk:
self.current_tgt_utts = self.get_spk_utterances(tgt_spk)
tgt_wavs = [tgt.wav for tgt in self.current_tgt_utts]
prep_data = self.engine.prepare(src_wav, tgt_wavs)
mel = self.engine.convert(*prep_data)
self.ui.draw_mel(mel.cpu().numpy().squeeze(0), "converted mel")
self.current_generated = (self.ui.selected_utterance.spk_name, Path(self.ui.selected_utterance.path).stem, self.ui.current_tgt_spk, mel)
self.ui.set_loading(0)
def vocode(self):
src_spk, basename, tgt_spk, mel = self.current_generated
assert mel is not None
# Synthesize the waveform
if not self.engine:
self.init_engine()
# def vocoder_progress(i, seq_len, b_size, gen_rate):
# real_time_factor = (gen_rate / cfg.data.sample_rate) * 1000
# line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \
# % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor)
# self.ui.log(line, "overwrite")
# self.ui.set_loading(i, seq_len)
# wav = vocoder.infer_waveform(mel, progress_callback=vocoder_progress)
wav = self.engine.vocode(mel).squeeze(0).cpu().numpy()
self.ui.set_loading(0)
self.ui.log("Done!", "append")
# Play it
wav = (wav / np.abs(wav).max()) * 0.95
self.ui.play(wav, cfg.data.sample_rate)
# Name it (history displayed in combobox)
name = f"{src_spk}_to_{tgt_spk}_{basename}"
spk_name = f"{src_spk}_to_{tgt_spk}"
# Update wavs combobox
if len(self.conv_utts_list) > MAX_WAVS:
self.conv_utts_list.pop()
self.conv_utts_idlist.pop()
self.conv_utts_list.insert(0, wav)
self.conv_utts_idlist.insert(0, name)
# self.ui.wavs_cb.disconnect()
self.ui.wavs_cb_model.setStringList(self.conv_utts_idlist)
self.ui.wavs_cb.setCurrentIndex(0)
self.ui.wavs_cb.currentIndexChanged.connect(self.set_current_utt)
# Update current wav
self.set_current_utt(0)
# Enable replay and save buttons:
self.ui.replay_wav_button.setDisabled(False)
self.ui.export_wav_button.setDisabled(False)
# Compute speaker embedding
embed = self.engine._get_spk_emb([wav], sr=cfg.data.sample_rate)
# Add the utterance
utterance = Utterance(
wav=wav, sr=cfg.data.sample_rate,
path=name, spk_name=spk_name,
mel=mel.cpu().numpy().squeeze(0), spk_emb=embed.squeeze(0)
)
self.utterances.add(utterance)
# Plot it
# self.ui.draw_embed(embed, name, "generated")
self.ui.draw_umap_projections(self.utterances)
def get_spk_utterances(self, spk_name):
utts = list(filter(lambda u: u.spk_name == spk_name, self.loaded_utts))
if len(utts) >= MAX_TARGET_SAMPLES:
return utts
utts_pathes = set(map(lambda u: u.path, utts))
available_utts_pathes = list(filter(lambda p: p not in utts_pathes, self.speaker_filepathes[spk_name]))
available_utts_pathes = available_utts_pathes[:MAX_TARGET_SAMPLES - len(utts_pathes)]
new_utts = list(map(lambda p: self.load_utterance(spk_name, p), available_utts_pathes))
self.loaded_utts.extend(new_utts)
self.loaded_utts = self.loaded_utts[-MAX_LOADED_SAMPLES:]
utts.extend(new_utts)
return utts
def load_utterance(self, spk_name, path):
wav = utils.load_wav(path)
return Utterance(wav, cfg.data.sample_rate, path=path, spk_name=spk_name)
def load_dataset_info(self, dataset_path):
speakers = utils.data.get_subdirs(dataset_path)
for spk in speakers:
self.speaker_filepathes[spk] = {
*self.speaker_filepathes[spk],
*utils.data.get_filepathes(os.path.join(dataset_path, spk), self.audio_ext)
}
def init_engine(self):
self.ui.log("Creating voice conversion model...")
self.ui.set_loading(1)
start = timer()
self.engine = VC()
for stage in self.engine.logged_init():
self.ui.set_loading(stage)
self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
self.ui.set_loading(0)
def update_seed_textbox(self):
self.ui.update_seed_textbox()