Skip to content

Latest commit

 

History

History
973 lines (678 loc) · 30.4 KB

t2i.md

File metadata and controls

973 lines (678 loc) · 30.4 KB

Text-to-Image and Image-to-Text (a.k.a. Visual Language Models, VLMs)

Here're are some resources about Text-to-Image and Image-to-Text modeling, understanding, generation in Multi-Modal LLMs, a.k.a. Visual Language Models, VLMs

Method

Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation

tag: Janus | DeepSeek | Peking University

paper link: here

github link: here

citation:

@misc{wu2024janusdecouplingvisualencoding,
      title={Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation}, 
      author={Chengyue Wu and Xiaokang Chen and Zhiyu Wu and Yiyang Ma and Xingchao Liu and Zizheng Pan and Wen Liu and Zhenda Xie and Xingkai Yu and Chong Ruan and Ping Luo},
      year={2024},
      eprint={2410.13848},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2410.13848}, 
}

Pixtral 12B

tag: Pixtral | Mistral AI

paper link: here

blog link: here

github link: here

model link: here

citation:

@misc{agrawal2024pixtral12b,
      title={Pixtral 12B}, 
      author={Pravesh Agrawal and Szymon Antoniak and Emma Bou Hanna and Baptiste Bout and Devendra Chaplot and Jessica Chudnovsky and Diogo Costa and Baudouin De Monicault and Saurabh Garg and Theophile Gervet and Soham Ghosh and Amélie Héliou and Paul Jacob and Albert Q. Jiang and Kartik Khandelwal and Timothée Lacroix and Guillaume Lample and Diego Las Casas and Thibaut Lavril and Teven Le Scao and Andy Lo and William Marshall and Louis Martin and Arthur Mensch and Pavankumar Muddireddy and Valera Nemychnikova and Marie Pellat and Patrick Von Platen and Nikhil Raghuraman and Baptiste Rozière and Alexandre Sablayrolles and Lucile Saulnier and Romain Sauvestre and Wendy Shang and Roman Soletskyi and Lawrence Stewart and Pierre Stock and Joachim Studnia and Sandeep Subramanian and Sagar Vaze and Thomas Wang and Sophia Yang},
      year={2024},
      eprint={2410.07073},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2410.07073}, 
}

ARIA: An Open Multimodal Native Mixture-of-Experts Model

tag: ARIA | MoE | Rhymes AI

paper link: here

blog link: here

github link: here

model link: here

homepage link: here

citation:

@misc{li2024ariaopenmultimodalnative,
      title={Aria: An Open Multimodal Native Mixture-of-Experts Model}, 
      author={Dongxu Li and Yudong Liu and Haoning Wu and Yue Wang and Zhiqi Shen and Bowen Qu and Xinyao Niu and Guoyin Wang and Bei Chen and Junnan Li},
      year={2024},
      eprint={2410.05993},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2410.05993}, 
}

Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models

tag: Molmo | PixMo | Allen AI

paper link: here

modelhub link: here

homepage link: here

citation:

@misc{deitke2024molmopixmoopenweights,
      title={Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models}, 
      author={Matt Deitke and Christopher Clark and Sangho Lee and Rohun Tripathi and Yue Yang and Jae Sung Park and Mohammadreza Salehi and Niklas Muennighoff and Kyle Lo and Luca Soldaini and Jiasen Lu and Taira Anderson and Erin Bransom and Kiana Ehsani and Huong Ngo and YenSung Chen and Ajay Patel and Mark Yatskar and Chris Callison-Burch and Andrew Head and Rose Hendrix and Favyen Bastani and Eli VanderBilt and Nathan Lambert and Yvonne Chou and Arnavi Chheda and Jenna Sparks and Sam Skjonsberg and Michael Schmitz and Aaron Sarnat and Byron Bischoff and Pete Walsh and Chris Newell and Piper Wolters and Tanmay Gupta and Kuo-Hao Zeng and Jon Borchardt and Dirk Groeneveld and Jen Dumas and Crystal Nam and Sophie Lebrecht and Caitlin Wittlif and Carissa Schoenick and Oscar Michel and Ranjay Krishna and Luca Weihs and Noah A. Smith and Hannaneh Hajishirzi and Ross Girshick and Ali Farhadi and Aniruddha Kembhavi},
      year={2024},
      eprint={2409.17146},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.17146}, 
}

NVLM: Open Frontier-Class Multimodal LLMs

tag: NVLM | Nvidia

paper link: here

homepage link: here

model link: here

citation:

@misc{dai2024nvlmopenfrontierclassmultimodal,
      title={NVLM: Open Frontier-Class Multimodal LLMs}, 
      author={Wenliang Dai and Nayeon Lee and Boxin Wang and Zhuolin Yang and Zihan Liu and Jon Barker and Tuomas Rintamaki and Mohammad Shoeybi and Bryan Catanzaro and Wei Ping},
      year={2024},
      eprint={2409.11402},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.11402}, 
}

Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders

tag: Eagle | Nvidia

paper link: here

github link: here

model-hub link: here

citation:

@misc{shi2024eagleexploringdesignspace,
      title={Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders}, 
      author={Min Shi and Fuxiao Liu and Shihao Wang and Shijia Liao and Subhashree Radhakrishnan and De-An Huang and Hongxu Yin and Karan Sapra and Yaser Yacoob and Humphrey Shi and Bryan Catanzaro and Andrew Tao and Jan Kautz and Zhiding Yu and Guilin Liu},
      year={2024},
      eprint={2408.15998},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2408.15998}, 
}

Show-o: One Single Transformer to Unify Multimodal Understanding and Generation

tag: Show-o | ByteDance | NUS

paper link: here

github link: here

homepage link: here

model link: here

citation:

@misc{xie2024showosingletransformerunify,
      title={Show-o: One Single Transformer to Unify Multimodal Understanding and Generation}, 
      author={Jinheng Xie and Weijia Mao and Zechen Bai and David Junhao Zhang and Weihao Wang and Kevin Qinghong Lin and Yuchao Gu and Zhijie Chen and Zhenheng Yang and Mike Zheng Shou},
      year={2024},
      eprint={2408.12528},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2408.12528}, 
}

Fast Vision Transformer via Additive Attention

tag: FViT | CAI24

paper link: here

citation:

@INPROCEEDINGS{cai2024fastvisiontransformervia,
  author={Wen, Yang and Chen, Samuel and Shrestha, Abhishek Krishna},
  booktitle={2024 IEEE Conference on Artificial Intelligence (CAI)}, 
  title={Fast Vision Transformer via Additive Attention}, 
  year={2024},
  volume={},
  number={},
  pages={573-574},
  keywords={Computer vision;Additives;Computational modeling;Memory management;Linearity;Convolutional neural networks;Task analysis;Fast Vision Transformer;Additive Attention},
  doi={10.1109/CAI59869.2024.00113}
}

RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness

tag: RLAIF-V | Tsinghua University | NUS

paper link: here

github link: here

citation:

@misc{yu2024rlaifvaligningmllmsopensource,
      title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness}, 
      author={Tianyu Yu and Haoye Zhang and Yuan Yao and Yunkai Dang and Da Chen and Xiaoman Lu and Ganqu Cui and Taiwen He and Zhiyuan Liu and Tat-Seng Chua and Maosong Sun},
      year={2024},
      eprint={2405.17220},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2405.17220}, 
}

mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration

tag: mPLUG-Owl 2 | Alibaba Group

paper link: here

github link: here

follow-up work: here

citation:

@misc{ye2023mplugowl2revolutionizingmultimodallarge,
      title={mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration}, 
      author={Qinghao Ye and Haiyang Xu and Jiabo Ye and Ming Yan and Anwen Hu and Haowei Liu and Qi Qian and Ji Zhang and Fei Huang and Jingren Zhou},
      year={2023},
      eprint={2311.04257},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2311.04257}, 
}

AdaMV-MoE: Adaptive Multi-Task Vision Mixture-of-Experts

tag: AdaMV-MoE | ICCV23 | Apple | Google

paper link: here

citation:

@inproceedings{chen2023adamv,
  title={AdaMV-MoE: Adaptive Multi-Task Vision Mixture-of-Experts},
  author={Chen, Tianlong and Chen, Xuxi and Du, Xianzhi and Rashwan, Abdullah and Yang, Fan and Chen, Huizhong and Wang, Zhangyang and Li, Yeqing},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={17346--17357},
  year={2023}
}

mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality

tag: mPLUG-Owl | DAMO Academy | Alibaba Group

paper link: here

github link: here

follow-up work: here

citation:

@misc{ye2024mplugowlmodularizationempowerslarge,
      title={mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality}, 
      author={Qinghao Ye and Haiyang Xu and Guohai Xu and Jiabo Ye and Ming Yan and Yiyang Zhou and Junyang Wang and Anwen Hu and Pengcheng Shi and Yaya Shi and Chenliang Li and Yuanhong Xu and Hehong Chen and Junfeng Tian and Qi Qian and Ji Zhang and Fei Huang and Jingren Zhou},
      year={2024},
      eprint={2304.14178},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2304.14178}, 
}

Visual Instruction Tuning

tag: LLaVA | NIPS23 | Microsoft

paper link: here

github link: here

homepage link: here

citation:

@misc{liu2023visualinstructiontuning,
      title={Visual Instruction Tuning}, 
      author={Haotian Liu and Chunyuan Li and Qingyang Wu and Yong Jae Lee},
      year={2023},
      eprint={2304.08485},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2304.08485}, 
}

Scalable Diffusion Models with Transformers

tag: DiT | UCB

paper link: here

github link: here

homepage link: here

citation:

@misc{peebles2023scalablediffusionmodelstransformers,
      title={Scalable Diffusion Models with Transformers}, 
      author={William Peebles and Saining Xie},
      year={2023},
      eprint={2212.09748},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2212.09748}, 
}

Reproducible scaling laws for contrastive language-image learning

tag: OpenCLIP | LAION | UCB

paper link: here

github link: here

citation:

@inproceedings{Cherti_2023,
   title={Reproducible Scaling Laws for Contrastive Language-Image Learning},
   url={http://dx.doi.org/10.1109/CVPR52729.2023.00276},
   DOI={10.1109/cvpr52729.2023.00276},
   booktitle={2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   publisher={IEEE},
   author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia},
   year={2023},
   month=jun }

EVA: Exploring the Limits of Masked Visual Representation Learning at Scale

tag: EVA | CVPR23 | BAAI | HUST

paper link: here

github link: here

citation:

@misc{fang2022evaexploringlimitsmasked,
      title={EVA: Exploring the Limits of Masked Visual Representation Learning at Scale}, 
      author={Yuxin Fang and Wen Wang and Binhui Xie and Quan Sun and Ledell Wu and Xinggang Wang and Tiejun Huang and Xinlong Wang and Yue Cao},
      year={2022},
      eprint={2211.07636},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2211.07636}, 
}

Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise

tag: Cold Diffusion

paper link: here

github link: here

citation:

@misc{bansal2022colddiffusioninvertingarbitrary,
      title={Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise}, 
      author={Arpit Bansal and Eitan Borgnia and Hong-Min Chu and Jie S. Li and Hamid Kazemi and Furong Huang and Micah Goldblum and Jonas Geiping and Tom Goldstein},
      year={2022},
      eprint={2208.09392},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2208.09392}, 
}

DaViT: Dual Attention Vision Transformers

tag: DaViT | ECCV22 | Microsoft | HKU

paper link: here

github link: here

citation:

@misc{ding2022davitdualattentionvision,
      title={DaViT: Dual Attention Vision Transformers}, 
      author={Mingyu Ding and Bin Xiao and Noel Codella and Ping Luo and Jingdong Wang and Lu Yuan},
      year={2022},
      eprint={2204.03645},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2204.03645}, 
}

DeiT III: Revenge of the ViT

tag: DeiT III | ECCV22 | Meta

paper link: here

github link: here

citation:

@misc{touvron2022deitiiirevengevit,
      title={DeiT III: Revenge of the ViT}, 
      author={Hugo Touvron and Matthieu Cord and Hervé Jégou},
      year={2022},
      eprint={2204.07118},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2204.07118}, 
}

Three things everyone should know about Vision Transformers

tag: Three Things | ViT | ECCV22 | Meta

paper link: here

github link: here

citation:

@misc{touvron2022thingsknowvisiontransformers,
      title={Three things everyone should know about Vision Transformers}, 
      author={Hugo Touvron and Matthieu Cord and Alaaeldin El-Nouby and Jakob Verbeek and Hervé Jégou},
      year={2022},
      eprint={2203.09795},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2203.09795}, 
}

Autoregressive Image Generation using Residual Quantization

tag: RQ-Transformer | RQ-VAE

paper link: here

github link: here

citation:

@misc{lee2022autoregressiveimagegenerationusing,
      title={Autoregressive Image Generation using Residual Quantization}, 
      author={Doyup Lee and Chiheon Kim and Saehoon Kim and Minsu Cho and Wook-Shin Han},
      year={2022},
      eprint={2203.01941},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2203.01941}, 
}

High-Resolution Image Synthesis with Latent Diffusion Models

tag: Latent Diffusion | LDM | Runway ML

paper link: here

github link: here

citation:

@misc{rombach2022highresolutionimagesynthesislatent,
      title={High-Resolution Image Synthesis with Latent Diffusion Models}, 
      author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
      year={2022},
      eprint={2112.10752},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2112.10752}, 
}

Leveraging Batch Normalization for Vision Transformers

tag: ViT | ViT-BN | ViT-FFNBN | ICCV21 | MSRA | Tsinghua University

paper link: here

citation:

@inproceedings{yao2021leveraging,
  author={Yao, Zhuliang and Cao, Yue and Lin, Yutong and Liu, Ze and Zhang, Zheng and Hu, Han},
  booktitle={2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)}, 
  title={Leveraging Batch Normalization for Vision Transformers}, 
  year={2021},
  volume={},
  number={},
  pages={413-422},
  keywords={Training;Computer vision;Conferences;Computer architecture;Transformers;Computer crashes;Feeds},
  doi={10.1109/ICCVW54120.2021.00050}
}

SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations

tag: SDEdit | Stanford University | CMU

paper link: here

github link: here

homepage link: here

citation:

@misc{meng2022sdeditguidedimagesynthesis,
      title={SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations}, 
      author={Chenlin Meng and Yutong He and Yang Song and Jiaming Song and Jiajun Wu and Jun-Yan Zhu and Stefano Ermon},
      year={2022},
      eprint={2108.01073},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2108.01073}, 
}

Diffusion Models Beat GANs on Image Synthesis

tag: Guided Diffusion | OpenAI

paper link: here

github link: here

citation:

@misc{dhariwal2021diffusionmodelsbeatgans,
      title={Diffusion Models Beat GANs on Image Synthesis}, 
      author={Prafulla Dhariwal and Alex Nichol},
      year={2021},
      eprint={2105.05233},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2105.05233}, 
}

Going deeper with Image Transformers

tag: CaiT | ICCV21 | Meta

paper link: here

github link: here

citation:

@inproceedings{touvron2021goingdeeperimagetransformers,
    author    = {Touvron, Hugo and Cord, Matthieu and Sablayrolles, Alexandre and Synnaeve, Gabriel and J\'egou, Herv\'e},
    title     = {Going Deeper With Image Transformers},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {32-42}
}

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

tag: Swin Transformer | MSRA

paper link: here

github link: here

citation:

@misc{liu2021swintransformerhierarchicalvision,
      title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, 
      author={Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo},
      year={2021},
      eprint={2103.14030},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2103.14030}, 
}

Learning Transferable Visual Models From Natural Language Supervision

tag: CLIP | OpenAI

paper link: here

github link: here

citation:

@misc{radford2021learningtransferablevisualmodels,
      title={Learning Transferable Visual Models From Natural Language Supervision}, 
      author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
      year={2021},
      eprint={2103.00020},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2103.00020}, 
}

Zero-Shot Text-to-Image Generation

tag: DALL-E | OpenAI

paper link: here

github link: here

citation:

@misc{ramesh2021zeroshottexttoimagegeneration,
      title={Zero-Shot Text-to-Image Generation}, 
      author={Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
      year={2021},
      eprint={2102.12092},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2102.12092}, 
}

Training data-efficient image transformers & distillation through attention

tag: DeiT | ICML21 | Meta

paper link: here

github link: here

citation:

@inproceedings{touvron2021trainingdataefficientimagetransformers,
  title =     {Training data-efficient image transformers & distillation through attention},
  author =    {Touvron, Hugo and Cord, Matthieu and Douze, Matthijs and Massa, Francisco and Sablayrolles, Alexandre and Jegou, Herve},
  booktitle = {International Conference on Machine Learning},
  pages =     {10347--10357},
  year =      {2021},
  volume =    {139},
  month =     {July}
}

Taming Transformers for High-Resolution Image Synthesis

tag: Taming Transformer | VQGAN

paper link: here

github link: here

citation:

@misc{esser2021tamingtransformershighresolutionimage,
      title={Taming Transformers for High-Resolution Image Synthesis}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2021},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2012.09841}, 
}

Score-Based Generative Modeling through Stochastic Differential Equations

tag: SDE | Stanford University | Google

paper link: here

github link: here

citation:

@misc{song2021scorebasedgenerativemodelingstochastic,
      title={Score-Based Generative Modeling through Stochastic Differential Equations}, 
      author={Yang Song and Jascha Sohl-Dickstein and Diederik P. Kingma and Abhishek Kumar and Stefano Ermon and Ben Poole},
      year={2021},
      eprint={2011.13456},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2011.13456}, 
}

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

tag: ViT | Vision Transformer | Google Brain

paper link: here

github link: here

citation:

@misc{dosovitskiy2021imageworth16x16words,
      title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, 
      author={Alexey Dosovitskiy and Lucas Beyer and Alexander Kolesnikov and Dirk Weissenborn and Xiaohua Zhai and Thomas Unterthiner and Mostafa Dehghani and Matthias Minderer and Georg Heigold and Sylvain Gelly and Jakob Uszkoreit and Neil Houlsby},
      year={2021},
      eprint={2010.11929},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2010.11929}, 
}

Denoising Diffusion Implicit Models

tag: DDIM | Stanford University

paper link: here

citation:

@misc{song2022denoisingdiffusionimplicitmodels,
      title={Denoising Diffusion Implicit Models}, 
      author={Jiaming Song and Chenlin Meng and Stefano Ermon},
      year={2022},
      eprint={2010.02502},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2010.02502}, 
}

Denoising Diffusion Probabilistic Models

tag: DDPM | UCB

paper link: here

github link: here

citation:

@misc{ho2020denoisingdiffusionprobabilisticmodels,
      title={Denoising Diffusion Probabilistic Models}, 
      author={Jonathan Ho and Ajay Jain and Pieter Abbeel},
      year={2020},
      eprint={2006.11239},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2006.11239}, 
}

Generative Modeling by Estimating Gradients of the Data Distribution

tag: NCSN | SMLD | Score matching | Score Function | Stanford University

paper link: here

citation:

@misc{song2020generativemodelingestimatinggradients,
      title={Generative Modeling by Estimating Gradients of the Data Distribution}, 
      author={Yang Song and Stefano Ermon},
      year={2020},
      eprint={1907.05600},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/1907.05600}, 
}

Benchmark

Are We on the Right Way for Evaluating Large Vision-Language Models?

tag: MMStar | Shanghai AILab

paper link: here

github link: here

homepage link: here

dataset link: here

citation:

@misc{chen2024rightwayevaluatinglarge,
      title={Are We on the Right Way for Evaluating Large Vision-Language Models?}, 
      author={Lin Chen and Jinsong Li and Xiaoyi Dong and Pan Zhang and Yuhang Zang and Zehui Chen and Haodong Duan and Jiaqi Wang and Yu Qiao and Dahua Lin and Feng Zhao},
      year={2024},
      eprint={2403.20330},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2403.20330}, 
}

MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI

tag: MMMU | CMU

paper link: here

github link: here

homepage link: here

dataset link: here

citation:

@misc{yue2024mmmumassivemultidisciplinemultimodal,
      title={MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI}, 
      author={Xiang Yue and Yuansheng Ni and Kai Zhang and Tianyu Zheng and Ruoqi Liu and Ge Zhang and Samuel Stevens and Dongfu Jiang and Weiming Ren and Yuxuan Sun and Cong Wei and Botao Yu and Ruibin Yuan and Renliang Sun and Ming Yin and Boyuan Zheng and Zhenzhu Yang and Yibo Liu and Wenhao Huang and Huan Sun and Yu Su and Wenhu Chen},
      year={2024},
      eprint={2311.16502},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2311.16502}, 
}

MMBench: Is Your Multi-modal Model an All-around Player?

tag: MMBench | Shanghai AILab

paper link: here

github link: here

dataset link: here

citation:

@misc{liu2024mmbenchmultimodalmodelallaround,
      title={MMBench: Is Your Multi-modal Model an All-around Player?}, 
      author={Yuan Liu and Haodong Duan and Yuanhan Zhang and Bo Li and Songyang Zhang and Wangbo Zhao and Yike Yuan and Jiaqi Wang and Conghui He and Ziwei Liu and Kai Chen and Dahua Lin},
      year={2024},
      eprint={2307.06281},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2307.06281}, 
}

Empirical Study

A Challenger to GPT-4V? Early Explorations of Gemini in Visual Expertise

tag: GPT-4V | Gemini | Awesome Multi-Modal LLMs | Tencent Youtu Lab | Shanghai AILab

paper link: here

github link: here

citation:

@misc{fu2023challengergpt4vearlyexplorations,
      title={A Challenger to GPT-4V? Early Explorations of Gemini in Visual Expertise}, 
      author={Chaoyou Fu and Renrui Zhang and Zihan Wang and Yubo Huang and Zhengye Zhang and Longtian Qiu and Gaoxiang Ye and Yunhang Shen and Mengdan Zhang and Peixian Chen and Sirui Zhao and Shaohui Lin and Deqiang Jiang and Di Yin and Peng Gao and Ke Li and Hongsheng Li and Xing Sun},
      year={2023},
      eprint={2312.12436},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2312.12436}, 
}

Survey

Diffusion Models: A Comprehensive Survey of Methods and Applications

tag: Diffusion Survey | Peking University

paper link: here

github link: here

citation:

@misc{yang2024diffusionmodelscomprehensivesurvey,
      title={Diffusion Models: A Comprehensive Survey of Methods and Applications}, 
      author={Ling Yang and Zhilong Zhang and Yang Song and Shenda Hong and Runsheng Xu and Yue Zhao and Wentao Zhang and Bin Cui and Ming-Hsuan Yang},
      year={2024},
      eprint={2209.00796},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2209.00796}, 
}