-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimu_lidar3.py
664 lines (534 loc) · 24.2 KB
/
simu_lidar3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import tcod as libtcod
from random import randint, random
from math import sqrt
from time import sleep
import numpy as np
import heapq
# actual size of the window
SCREEN_WIDTH = 180
SCREEN_HEIGHT = 100
# size of the map
MAP_WIDTH = 180
MAP_HEIGHT = 95
# parameters for dungeon generator
ROOM_MAX_SIZE = 25
ROOM_MIN_SIZE = 15
MAX_ROOMS = 20
FOV_ALGO = 0 # default FOV algorithm
FOV_LIGHT_WALLS = True # light walls or not
TORCH_RADIUS = 15
LIMIT_FPS = 20 # 20 frames-per-second maximum
color_dark_wall = libtcod.Color(0, 0, 100)
color_light_wall = libtcod.Color(130, 110, 50)
color_dark_ground = libtcod.Color(50, 50, 150)
color_light_ground = libtcod.Color(200, 180, 50)
class Tile:
# a tile of the map and its properties
def __init__(self, blocked, block_sight=None):
self.blocked = blocked
# all tiles start unexplored
self.explored = False
# by default, if a tile is blocked, it also blocks sight
if block_sight is None: block_sight = blocked
self.block_sight = block_sight
class Rect:
# a rectangle on the map. used to characterize a room.
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.size = w*h
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
def intersect(self, other):
# returns true if this rectangle intersects with another one
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
class Noeud:
def __init__(self, x, y, cout, heuristique):
self.x = int(x)
self.y = int(y)
self.cout = cout
self.heuristique = heuristique
def memePoint(self, other):
return self.x == other.x and self.y == other.y
def __cmp__(self, other):
if self.heuristique < other.heuristique:
return 1
elif self.heuristique == other.heuristique:
return 0
else:
return -1
class FilePrio(object):
""" A neat min-heap wrapper which allows storing items by priority
and get the lowest item out first (pop()).
Also implements the iterator-methods, so can be used in a for
loop, which will loop through all items in increasing priority order.
Remember that accessing the items like this will iteratively call
pop(), and hence empties the heap! """
def __init__(self):
""" create a new min-heap. """
self._heap = []
def push(self, noeud):
""" Push an item with priority into the heap.
Priority 0 is the highest, which means that such an item will
be popped first."""
heapq.heappush(self._heap, (noeud.heuristique+random()/100, noeud))
def pop(self):
""" Returns the item with lowest priority. """
item = heapq.heappop(self._heap)[1] # (prio, item)[1] == item
return item
def liste_valeurs(self):
result = []
for e in self._heap:
result.append(e[1])
return result
def __len__(self):
return len(self._heap)
def __iter__(self):
""" Get all elements ordered by asc. priority. """
return self
def next(self):
""" Get all elements ordered by their priority (lowest first). """
try:
return self.pop()
except IndexError:
raise StopIteration
class Object:
# this is a generic object: the player, a monster, an item, the stairs...
# it's always represented by a character on screen.
def __init__(self, x, y, char, color, blocks=False):
self.x = int(x)
self.y = int(y)
self.char = char
self.color = color
self.blocks = blocks
def move(self, dx, dy):
# move by the given amount, if the destination is not blocked
if not map[self.x + dx][self.y + dy].blocked:
self.x += dx
self.y += dy
def move2(self, x, y):
dx = x - self.x
dy = y - self.y
self.move(dx, dy)
def draw(self):
# only show if it's visible to the player
if libtcod.map_is_in_fov(fov_map, int(self.x), int(self.y)):
# set the color and then draw the character that represents this object at its position
libtcod.console_set_default_foreground(con, self.color)
libtcod.console_put_char(con, int(self.x), int(self.y), self.char, libtcod.BKGND_NONE)
def clear(self):
# erase the character that represents this object
libtcod.console_put_char(con, int(self.x), int(self.y), ' ', libtcod.BKGND_NONE)
def move_towards(self, target_x, target_y):
# vector from this object to the target, and distance
dx = target_x - self.x
dy = target_y - self.y
distance = sqrt(dx ** 2 + dy ** 2)
# normalize it to length 1 (preserving direction), then round it and
# convert to integer so the movement is restricted to the map grid
dx = round(dx / distance)
dy = round(dy / distance)
self.move(dx, dy)
def move_astar(self, target):
# Create a FOV map that has the dimensions of the map
fov = libtcod.map_new(MAP_WIDTH, MAP_HEIGHT)
# Scan the current map each turn and set all the walls as unwalkable
for y1 in range(MAP_HEIGHT):
for x1 in range(MAP_WIDTH):
libtcod.map_set_properties(fov, x1, y1, not map[x1][y1].block_sight, not map[x1][y1].blocked)
# Scan all the objects to see if there are objects that must be navigated around
# Check also that the object isn't self or the target (so that the start and the end points are free)
# The AI class handles the situation if self is next to the target so it will not use this A* function anyway
for obj in objects:
if obj.blocks and obj != self and obj != target:
# Set the tile as a wall so it must be navigated around
libtcod.map_set_properties(fov, obj.x, obj.y, True, False)
# Allocate a A* path
# The 1.41 is the normal diagonal cost of moving, it can be set as 0.0 if diagonal moves are prohibited
my_path = libtcod.path_new_using_map(fov, 1.41)
# Compute the path between self's coordinates and the target's coordinates
libtcod.path_compute(my_path, int(self.x), int(self.y), target.x, target.y)
# Check if the path exists, and in this case, also the path is shorter than 25 tiles
# The path size matters if you want the monster to use alternative longer paths (for example through other
# rooms) if for example the player is in a corridor
# It makes sense to keep path size relatively low to keep the monsters from running around the map if there's an
# alternative path really far away
if not libtcod.path_is_empty(my_path) and libtcod.path_size(my_path) < 50:
# Find the next coordinates in the computed full path
x, y = libtcod.path_walk(my_path, True)
if x or y:
# Set self's coordinates to the next path tile
self.x = x
self.y = y
else:
# Keep the old move function as a backup so that if there are no paths (for example another monster blocks a corridor)
# it will still try to move towards the player (closer to the corridor opening)
self.move_towards(target.x, target.y)
return
# Delete the path to free memory
libtcod.path_delete(my_path)
def move_astar2(self, target):
def plus_proche(decouverts, fScore):
v_min = np.inf
p_min = None
for p in decouverts:
if fScore[p] < v_min:
v_min = fScore[p]
p_min = p
return p_min
def reconstruct_path(viens_de, current):
total_path = [current]
while current in viens_de:
current = viens_de[current]
total_path.append(current)
return total_path
cases_libres, murs_vus = self.lit_frontieres()
start = (self.x, self.y)
proches = set()
decouverts = {start}
viens_de = dict()
gScore, fScore = dict(), dict()
gScore[start] = 0
fScore[start] = dist(start, target)
while len(decouverts) > 0:
current = plus_proche(decouverts, fScore) # the node in decouverts having the lowest fScore[] value
if current == target:
return reconstruct_path(viens_de, current)
decouverts.remove(current)
proches.add(current)
for i in [-1,0,1]:
for j in [-1,0,1]:
if i!=0 or j!=0:
voisin = (int(current[0]+i),int(current[0]+j))
if voisin in set(cases_libres):
if not voisin in proches:
tentative_gScore = gScore[current] + 1
if voisin not in decouverts: # Discover a new node
decouverts.add(voisin)
if tentative_gScore >= gScore[voisin]:
pass # This is not a better path.
else:
# This path is the best until now. Record it!
viens_de[voisin] = current
gScore[voisin] = tentative_gScore
fScore[voisin] = gScore[voisin] + dist(voisin, target)
return -1
def move_astar3(self, target):
cases_libres, murs_vus = self.lit_frontieres()
murs_vus = set(murs_vus)
depart = Noeud(self.x, self.y, 0, 0)
closedList = []
openList = FilePrio()
parent = dict()
openList.push(depart)
while len(openList) > 0:
u = openList.pop()
if u.x == target[0] and u.y == target[1]:
chemin = [u]
while u in parent:
u = parent[u]
chemin.append(u)
for i in range(len(chemin)):
chemin[i] = (chemin[i].x, chemin[i].y)
return chemin[::-1][1:]
for k in range(-1, 2):
for l in range(-1, 2):
# if k==0 or l==0: #pour l'empecher de se déplacer en diago
if k == 0 or l == 0:
cout = 1 # On se déplace en ligne droite
else:
cout = sqrt(2) # On se déplace en diago (pour éviter que l'algo pense qu'un chemin en zigzag
# équivaut à une ligne droite)
v = Noeud(u.x + k, u.y + l, u.cout + cout, 0) # Si le noeud s'avère intéressant, l'heuristique
# sera alors calculée
present = False
if (v.x, v.y) not in murs_vus:
for n in closedList + openList.liste_valeurs():
if n.memePoint(v) and n.cout <= v.cout:
present = True
if not present:
v.heuristique = v.cout + dist((v.x, v.y), (target[0], target[1]))
openList.push(v)
parent[v] = u
closedList.append(u)
print("Aucun chemin trouvé")
return -1
def lit_frontieres(self):
cases_libres = []
murs_vus = []
for i in range(len(map)):
for j in range(len(map[0])):
if map[i][j].explored and not map[i][j].blocked:
for k in range(-1, 2):
for l in range(-1, 2):
if not map[i+k][j+l].explored:
cases_libres.append((i+k, j+l))
break
elif map[i][j].explored and map[i][j].blocked:
murs_vus.append((i, j))
return cases_libres, murs_vus
def move_potentiel(self):
score_max = -9999
objectif = (self.x, self.y)
cases_libres, murs_vus = self.lit_frontieres()
for k in range(-1, 2):
for l in range(-1, 2):
# if k==0 or l==0:#pour l'empecher de se déplacer en diago
point = (self.x+k, self.y+l)
score = 0
for obst in murs_vus:
d_obst = dist(obst, point)
if (d_obst**2) == 0:
score -= 99999
else:
score -= 1/(d_obst**2)
for cible in cases_libres:
d_cible = dist(cible, point)
score += 50*d_cible**(-2)
if score > score_max:
score_max = score
objectif = point
move_x = objectif[0] - self.x
move_y = objectif[1] - self.y
self.move(move_x, move_y)
def create_room(room):
global map
# go through the tiles in the rectangle and make them passable
for x in range(room.x1 + 1, room.x2):
for y in range(room.y1 + 1, room.y2):
map[x][y].blocked = False
map[x][y].block_sight = False
# créer piliers
for x in range(room.x1 + 1, room.x2):
for y in range(room.y1 + 1, room.y2):
if randint(0, 1300-room.size) == 0:
map[x][y].blocked = True
map[x][y].block_sight = True
def create_h_tunnel(x1, x2, y):
global map
# horizontal tunnel. min() and max() are used in case x1>x2
for x in range(int(min(x1, x2)), int(max(x1, x2) + 1)):
map[x][int(y)].blocked = False
map[x][int(y)].block_sight = False
map[x][int(y)+1].blocked = False
map[x][int(y)+1].block_sight = False
map[x][int(y)-1].blocked = False
map[x][int(y)-1].block_sight = False
def create_v_tunnel(y1, y2, x):
global map
# vertical tunnel
for y in range(int(min(y1, y2)), int(max(y1, y2) + 1)):
map[int(x)][y].blocked = False
map[int(x)][y].block_sight = False
map[int(x)+1][y].blocked = False
map[int(x)+1][y].block_sight = False
map[int(x)-1][y].blocked = False
map[int(x)-1][y].block_sight = False
def make_map():
global map, player
# fill map with "blocked" tiles
map = [[Tile(True)
for y in range(MAP_HEIGHT)]
for x in range(MAP_WIDTH)]
rooms = []
num_rooms = 0
for r in range(MAX_ROOMS):
# random width and height
w = libtcod.random_get_int(0, ROOM_MIN_SIZE, ROOM_MAX_SIZE)
h = libtcod.random_get_int(0, ROOM_MIN_SIZE, ROOM_MAX_SIZE)
# random position without going out of the boundaries of the map
x = libtcod.random_get_int(0, 0, MAP_WIDTH - w - 1)
y = libtcod.random_get_int(0, 0, MAP_HEIGHT - h - 1)
# "Rect" class makes rectangles easier to work with
new_room = Rect(x, y, w, h)
# run through the other rooms and see if they intersect with this one
failed = False
for other_room in rooms:
if new_room.intersect(other_room):
failed = True
break
if not failed:
# this means there are no intersections, so this room is valid
# "paint" it to the map's tiles
create_room(new_room)
# center coordinates of new room, will be useful later
(new_x, new_y) = new_room.center()
if num_rooms == 0:
# this is the first room, where the player starts at
player.x = new_x
player.y = new_y
else:
# all rooms after the first:
# connect it to the previous room with a tunnel
# center coordinates of previous room
(prev_x, prev_y) = rooms[num_rooms-1].center()
# draw a coin (random number that is either 0 or 1)
if libtcod.random_get_int(0, 0, 1) == 1:
# first move horizontally, then vertically
create_h_tunnel(prev_x, new_x, prev_y)
create_v_tunnel(prev_y, new_y, new_x)
else:
# first move vertically, then horizontally
create_v_tunnel(prev_y, new_y, prev_x)
create_h_tunnel(prev_x, new_x, new_y)
# finally, append the new room to the list
rooms.append(new_room)
num_rooms += 1
def dist(x, y):
return sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2)
def render_all():
global fov_map, color_dark_wall, color_light_wall
global color_dark_ground, color_light_ground
global fov_recompute
if fov_recompute:
# recompute FOV if needed (the player moved or something)
fov_recompute = False
libtcod.map_compute_fov(fov_map, int(player.x), int(player.y), TORCH_RADIUS, FOV_LIGHT_WALLS, FOV_ALGO)
# go through all tiles, and set their background color according to the FOV
for y in range(MAP_HEIGHT):
for x in range(MAP_WIDTH):
visible = libtcod.map_is_in_fov(fov_map, x, y)
wall = map[x][y].block_sight
if not visible:
# if it's not visible right now, the player can only see it if it's explored
if map[x][y].explored:
if wall:
libtcod.console_set_char_background(con, x, y, color_dark_wall, libtcod.BKGND_SET)
else:
libtcod.console_set_char_background(con, x, y, color_dark_ground, libtcod.BKGND_SET)
else:
# it's visible
if wall:
libtcod.console_set_char_background(con, x, y, color_light_wall, libtcod.BKGND_SET)
else:
libtcod.console_set_char_background(con, x, y, color_light_ground, libtcod.BKGND_SET)
# since it's visible, explore it
map[x][y].explored = True
# draw all objects in the list
for object in objects:
object.draw()
# blit the contents of "con" to the root console
libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0)
def handle_keys():
global fov_recompute
key = libtcod.console_check_for_keypress() # real-time
# key = libtcod.console_wait_for_keypress(True) #turn-based
if key.vk == libtcod.KEY_ENTER and key.lalt:
# Alt+Enter: toggle fullscreen
libtcod.console_set_fullscreen(not libtcod.console_is_fullscreen())
elif key.vk == libtcod.KEY_ESCAPE:
return True # exit game
# movement keys
if libtcod.console_is_key_pressed(libtcod.KEY_UP):
player.move(0, -1)
fov_recompute = True
elif libtcod.console_is_key_pressed(libtcod.KEY_DOWN):
player.move(0, 1)
fov_recompute = True
elif libtcod.console_is_key_pressed(libtcod.KEY_LEFT):
player.move(-1, 0)
fov_recompute = True
elif libtcod.console_is_key_pressed(libtcod.KEY_RIGHT):
player.move(1, 0)
fov_recompute = True
def IA_cpp():
global chemin
if len(chemin) < TORCH_RADIUS-1: # On recalcule une nouvelle destination dès qu'on est arrivé pas trop loin de
# l'objectif (en fonction de la portée du lidar)
meilleure_pos = (player.x, player.y)
min_dist = 99999
for i in range(len(map)):
for j in range(len(map[0])):
if map[i][j].explored and not map[i][j].blocked:
for k in range(-1, 2):
for l in range(-1, 2):
if not map[i+k][j+l].explored:
if dist((i, j), (player.x, player.y)) < min_dist:
meilleure_pos = (i, j)
min_dist = dist((i, j), (player.x, player.y))
destination = Object(meilleure_pos[0], meilleure_pos[1], 'o', libtcod.white)
# print(str((player.x, player.y)) + " -> " + str(meilleure_pos))
chemin = player.move_astar3(meilleure_pos)
# print(chemin)
if len(chemin) == 0: # On a tout exploré !
print("Exploration terminée")
return
# for point in chemin:
# player.move_towards(point[0], point[1])
point = chemin.pop(0)
player.move_towards(point[0], point[1])
fov_recompute = True
def IA_cpp():
""""Ce qui ne va pas :
nouvelle destination pas recalculée à chaque tour (possible mais long en calcul)
quand il y a un mur fin
"""
global chemin
if len(chemin) < TORCH_RADIUS-1: # On recalcule une nouvelle destination dès qu'on est arrivé pas trop loin de
# l'objectif (en fonction de la portée du lidar)
meilleure_pos = (player.x, player.y)
min_dist = 99999
for i in range(len(map)):
for j in range(len(map[0])):
if map[i][j].explored and not map[i][j].blocked:
for k in range(-1, 2):
for l in range(-1, 2):
if not map[i+k][j+l].explored:
if dist((i, j), (player.x, player.y)) < min_dist:
meilleure_pos = (i, j)
min_dist = dist((i, j), (player.x, player.y))
destination = Object(meilleure_pos[0], meilleure_pos[1], 'o', libtcod.white)
# print(str((player.x, player.y)) + " -> " + str(meilleure_pos))
chemin = player.move_astar3(meilleure_pos)
# print(chemin)
if len(chemin) == 0: # On a tout exploré !
print("Exploration terminée")
return
# for point in chemin:
# player.move_towards(point[0], point[1])
point = chemin.pop(0)
player.move_towards(point[0], point[1])
fov_recompute = True
if __name__ == '__main__':
#############################################
# Initialization & Main Loop
#############################################
libtcod.console_set_custom_font('arial10x10.png', libtcod.FONT_TYPE_GREYSCALE | libtcod.FONT_LAYOUT_TCOD)
libtcod.console_init_root(SCREEN_WIDTH, SCREEN_HEIGHT, 'python/libtcod tutorial', False)
libtcod.sys_set_fps(LIMIT_FPS)
con = libtcod.console_new(SCREEN_WIDTH, SCREEN_HEIGHT)
# create object representing the player
player = Object(SCREEN_WIDTH/2, SCREEN_HEIGHT/2, '@', libtcod.white)
# create an NPC
npc = Object(SCREEN_WIDTH/2 - 5, SCREEN_HEIGHT/2, '@', libtcod.yellow)
# the list of objects with those two
objects = [npc, player]
# generate map (at this point it's not drawn to the screen)
make_map()
# create the FOV map, according to the generated map
fov_map = libtcod.map_new(MAP_WIDTH, MAP_HEIGHT)
for y in range(MAP_HEIGHT):
for x in range(MAP_WIDTH):
libtcod.map_set_properties(fov_map, x, y, not map[x][y].block_sight, not map[x][y].blocked)
fov_recompute = True
chemin = []
while not libtcod.console_is_window_closed():
# render the screen
render_all()
IA_cpp()
# player.move_potentiel()
sleep(0.5)
fov_recompute = True
libtcod.console_flush()
# erase all objects at their old locations, before they move
for object in objects:
object.clear()
# handle keys and exit game if needed
exit = handle_keys()
if exit:
break