-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgendata_nostack.py
68 lines (56 loc) · 2.16 KB
/
gendata_nostack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gym
import os
import gym.utils.play
import pickle
import numpy as np
from torchvision import transforms
from datasets import ChannelFirst
class Callback:
def __init__(self):
self.preprocess = transforms.Compose([
ChannelFirst(),
#transforms.Resize((84, 84)),
# transforms.Grayscale(),
# FrameStack(4)
])
self.frames_path = './frames/nostack'
#self.folders = os.listdir(self.frames_path)
'''
self.actions = [0, 1, 2, 3]
self.action_path = dict()
self.action_idx = dict()
for a in self.actions:
self.action_path[a] = self.frames_path + str(a) + '/'
self.action_idx[a] = len(os.listdir(self.action_path[a]))
'''
self.g_count = 0
os.mkdir(self.frames_path + str(self.g_count))
self.fno = 0
def __call__(self, obs_t, obs_tp1, action, rew, done, info):
'''
callback: lambda or None
Callback if a callback is provided it will be executed after
every step. It takes the following input:
obs_t: observation before performing action
obs_tp1: observation after performing action
action: action that was executed
rew: reward that was received
done: whether the environment is done or not
info: debug info
'''
obs_t = self.preprocess(np.array(obs_t))
# with open(self.action_path[action]+str(self.action_idx[action])+'_'+str(action)+'.pkl', 'wb') as f:
with open(self.frames_path + str(self.g_count) + '/' + str(self.fno) + '_' + str(action) + '.pkl', 'wb') as f:
pickle.dump(obs_t, f)
self.fno += 1
if done:
# self.preprocess.transforms[-1].reset()
self.g_count += 1
os.mkdir(self.frames_path + str(self.g_count))
self.fno = 0
#self.action_idx[action] += 1
env = gym.make('Breakout-v0')
env = gym.wrappers.Monitor(
env, './videos', video_callable=lambda x: True, force=True) # force=True
while True:
gym.utils.play.play(env, zoom=3, callback=Callback(), fps=30)