-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathalgorithm.py
76 lines (61 loc) · 2 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import argparse
import json
import sys
import numpy as np
import pandas as pd
from tensorflow import keras
from model import AutoEn
from dataclasses import dataclass, asdict
import shutil
@dataclass
class CustomParameters:
latent_size: int = 32
epochs: int = 10
learning_rate: float = 0.005
noise_ratio: float = 0.1
split: float = 0.8
early_stopping_delta: float = 1e-2
early_stopping_patience: int = 10
random_state: int = 42
class AlgorithmArgs(argparse.Namespace):
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def load_data(args):
df = pd.read_csv(args.dataInput)
data = df.iloc[:, 1:-1].values
labels = df.iloc[:, -1].values
return data, labels
def train(args):
xtr, ytr = load_data(args)
ii = (ytr == 0)
not_anamoly_data = xtr[ii]
params = asdict(args.customParameters)
del params["random_state"]
model = AutoEn(**params)
model.fit(not_anamoly_data, args.modelOutput)
shutil.make_archive(args.modelOutput, "zip", "check")
def pred(args):
xte, _ = load_data(args)
shutil.unpack_archive(args.modelOutput+".zip", "m", "zip")
model = keras.models.load_model("m")
pred = model.predict(xte)
pred = np.mean(np.abs(pred - xte), axis=1)
np.savetxt(args.dataOutput, pred, delimiter= ",")
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random, tensorflow
random.seed(seed)
np.random.seed(seed)
tensorflow.random.set_seed(seed)
if __name__=="__main__":
args = AlgorithmArgs.from_sys_args()
set_random_state(args)
if args.executionType == "train":
train(args)
else:
pred(args)