-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathalgorithm.py
94 lines (79 loc) · 3.09 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import argparse
from dataclasses import dataclass
import json
import numpy as np
import pandas as pd
import sys
from ocean_wnn.model import WNN
@dataclass
class CustomParameters:
train_window_size: int = 20
hidden_size: int = 100
batch_size: int = 64
test_batch_size: int = 256
epochs: int = 1
split: float = 0.8
early_stopping_delta: float = 0.05
early_stopping_patience: int = 10
learning_rate: float = 0.01
wavelet_a: float = -2.5
wavelet_k: float = -1.5
wavelet_wbf: str = "mexican_hat" # "mexican_hat", "central_symmetric", "morlet"
wavelet_cs_C: float = 1.75
threshold_percentile: float = 0.99
with_threshold: bool = True
random_state: int = 42
class AlgorithmArgs(argparse.Namespace):
@property
def ts(self) -> np.ndarray:
return self.df.iloc[:, 1:-1].values
@property
def df(self) -> pd.DataFrame:
return pd.read_csv(self.dataInput)
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(
filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def train(args: AlgorithmArgs):
data = args.ts
model = WNN(window_size=args.customParameters.train_window_size,
hidden_size=args.customParameters.hidden_size,
a=args.customParameters.wavelet_a,
k=args.customParameters.wavelet_k,
wbf=args.customParameters.wavelet_wbf,
C=args.customParameters.wavelet_cs_C)
model.fit(data,
epochs=args.customParameters.epochs,
learning_rate=args.customParameters.learning_rate,
batch_size=args.customParameters.batch_size,
test_batch_size=args.customParameters.test_batch_size,
split=args.customParameters.split,
early_stopping_delta=args.customParameters.early_stopping_delta,
early_stopping_patience=args.customParameters.early_stopping_patience,
threshold_percentile=args.customParameters.threshold_percentile,
model_path=args.modelOutput)
model.save(args.modelOutput)
def execute(args: AlgorithmArgs):
data = args.ts
model = WNN.load(args.modelInput)
scores, _ = model.detect(data, with_threshold=args.customParameters.with_threshold)
scores.tofile(args.dataOutput, sep="\n")
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random, torch
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if __name__ == "__main__":
args = AlgorithmArgs.from_sys_args()
set_random_state(args)
if args.executionType == "train":
train(args)
elif args.executionType == "execute":
execute(args)
else:
raise ValueError(f"No executionType '{args.executionType}' available! Choose either 'train' or 'execute'.")