-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathalgorithm.py
64 lines (51 loc) · 1.99 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import pandas as pd
import json
import sys
from dataclasses import dataclass
import argparse
from msanomalydetector import SpectralResidual, DetectMode
@dataclass
class CustomParameters:
mag_window_size: int = 3
score_window_size: int = 40
window_size: int = 50
random_state: int = 42
class AlgorithmArgs(argparse.Namespace):
@property
def df(self) -> pd.DataFrame:
return pd.read_csv(self.dataInput)
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(
filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def execute(args: AlgorithmArgs):
series = args.df.iloc[:, [0, 1]]
series.columns = ["timestamp", "value"]
sr = SpectralResidual(series,
mag_window=args.customParameters.mag_window_size,
score_window=args.customParameters.score_window_size,
batch_size=args.customParameters.window_size,
sensitivity=99,
detect_mode=DetectMode.anomaly_only,
threshold=0.3)
scores = sr.detect().score.values
scores.tofile(args.dataOutput, sep="\n")
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random
import numpy as np
random.seed(seed)
np.random.seed(seed)
if __name__ == "__main__":
args = AlgorithmArgs.from_sys_args()
set_random_state(args)
if args.executionType == "train":
print("This algorithm does not need to be trained!")
elif args.executionType == "execute":
execute(args)
else:
raise ValueError(f"No executionType '{args.executionType}' available! Choose either 'train' or 'execute'.")