-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathalgorithm.py
231 lines (186 loc) · 8.57 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import argparse
from dataclasses import dataclass
import json
import numpy as np
import pandas as pd
import sys
import torch
from torch.autograd import Variable
from torch.nn import BCELoss
from torch.nn.init import normal_ as normal
from torch.optim import Adam
from torch.utils.data import DataLoader
from tanogan.dataset import TAnoGANDataset
from tanogan.models import LSTMGenerator, LSTMDiscriminator
from tanogan.early_stopping import EarlyStopping
@dataclass
class CustomParameters:
epochs: int = 1
cuda: bool = False
window_size: int = 30
learning_rate: float = 2e-4
batch_size: int = 32
n_jobs: int = 1
iterations: int = 25
random_state: int = 42
split: float = 0.8
early_stopping_delta: float = 0.05
early_stopping_patience: int = 10
class AlgorithmArgs(argparse.Namespace):
@property
def df(self) -> pd.DataFrame:
return pd.read_csv(self.dataInput)
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(
filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def train(args: AlgorithmArgs):
data = args.df
split_at = int(len(data) * args.customParameters.split)
dataset = TAnoGANDataset(X=data.values[:split_at, 1:-1], y=data.values[:split_at, -1],
window_length=args.customParameters.window_size,
stride=1)
dataloader = DataLoader(dataset, shuffle=True,
batch_size=args.customParameters.batch_size,
num_workers=args.customParameters.n_jobs)
valid_dataset = TAnoGANDataset(X=data.values[split_at:, 1:-1], y=data.values[:split_at, -1],
window_length=args.customParameters.window_size,
stride=1)
valid_dataloader = DataLoader(valid_dataset, shuffle=True,
batch_size=args.customParameters.batch_size,
num_workers=args.customParameters.n_jobs)
device = torch.device("cuda:0" if args.customParameters.cuda else "cpu") # select the device
in_dim = dataset.n_feature # input dimension is same as number of feature
netD = LSTMDiscriminator(in_dim=in_dim, device=device).to(device)
netG = LSTMGenerator(in_dim=in_dim, out_dim=in_dim, device=device).to(device)
criterion = BCELoss().to(device)
optimizerG = Adam(netG.parameters(), lr=args.customParameters.learning_rate)
optimizerD = Adam(netD.parameters(), lr=args.customParameters.learning_rate)
real_label = 1
fake_label = 0
def save_model():
torch.save({
"discriminator": netD.state_dict(),
"generator": netG.state_dict(),
"in_dim": in_dim
}, args.modelOutput)
early_stopping = EarlyStopping(args.customParameters.early_stopping_patience, args.customParameters.early_stopping_delta, args.customParameters.epochs,
callbacks=[(lambda i, _l, _e: save_model() if i else None)])
for epoch in early_stopping:
netD.train()
for i, (x, y) in enumerate(dataloader, 0):
# Train with real data
netD.zero_grad()
real = x.to(device)
batch_size, seq_len = real.size(0), real.size(1)
label = torch.full((batch_size, seq_len, 1), real_label, device=device, dtype=torch.float)
output, _ = netD.forward(real)
errD_real = criterion(output, label)
errD_real.backward()
optimizerD.step()
D_x = output.mean().item()
# Train with fake data
noise = Variable(normal(torch.Tensor(batch_size, seq_len, in_dim), mean=0, std=0.1))
if args.customParameters.cuda:
noise = noise.cuda()
fake, _ = netG.forward(noise)
output, _ = netD.forward(fake.detach())
label.fill_(fake_label)
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
# Train G
netG.zero_grad()
noise = Variable(normal(torch.Tensor(batch_size, seq_len, in_dim), mean=0, std=0.1))
if args.customParameters.cuda:
noise = noise.cuda()
fake, _ = netG.forward(noise)
label.fill_(real_label)
output, _ = netD.forward(fake)
errG = criterion(output, label)
errG.backward()
optimizerG.step()
D_G_z2 = output.mean().item()
netD.eval()
val_loss = []
for i, (x, y) in enumerate(valid_dataloader, 0):
real = x.to(device)
batch_size, seq_len = real.size(0), real.size(1)
label = torch.full((batch_size, seq_len, 1), real_label, device=device, dtype=torch.float)
output, _ = netD.forward(real)
errD_real = criterion(output, label)
val_loss.append(errD_real.item())
early_stopping.update(np.mean(val_loss).item())
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f'
% (epoch, args.customParameters.epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
save_model()
def execute(args: AlgorithmArgs):
data = args.df
device = torch.device("cuda:0" if args.customParameters.cuda else "cpu")
checkpoint = torch.load(args.modelInput)
in_dim = checkpoint["in_dim"]
netD = LSTMDiscriminator(in_dim=in_dim, device=device).to(device)
netD.load_state_dict(checkpoint["discriminator"])
netG = LSTMGenerator(in_dim=in_dim, out_dim=in_dim, device=device).to(device)
netG.load_state_dict(checkpoint["generator"])
def anomaly_score(x: Variable, G_z: torch.Tensor, Lambda=0.1):
residual_losses = torch.abs(x - G_z).sum(axis=[1,2])
output, x_feature = netD(x.to(device))
output, G_z_feature = netD(G_z.to(device))
discrimination_losses = torch.abs(x_feature - G_z_feature).sum(axis=[1,2])
single_losses = (1-Lambda) * residual_losses.to(device) + Lambda * discrimination_losses.to(device)
total_loss = (1-Lambda) * residual_losses.sum().to(device) + Lambda * discrimination_losses.sum().to(device)
return total_loss, single_losses.detach().numpy()
dataset = TAnoGANDataset(X=data.values[:, 1:-1], y=data.values[:, -1],
window_length=args.customParameters.window_size,
stride=args.customParameters.window_size)
dataloader = DataLoader(dataset, shuffle=False,
batch_size=args.customParameters.batch_size,
num_workers=args.customParameters.n_jobs)
loss_list = []
for i, (x, y) in enumerate(dataloader):
z = Variable(normal(torch.zeros(x.shape),
mean=0,
std=0.1),
requires_grad=True)
z_optimizer = Adam([z], lr=1e-2)
single_losses = None
if args.customParameters.cuda:
for j in range(args.customParameters.iterations):
gen_fake, _ = netG(z.cuda())
loss, single_losses = anomaly_score(Variable(x).cuda(), gen_fake)
loss.backward()
z_optimizer.step()
else:
for j in range(args.customParameters.iterations):
gen_fake, _ = netG(z)
loss, single_losses = anomaly_score(Variable(x), gen_fake)
loss.backward()
z_optimizer.step()
print(single_losses.shape)
loss_list.append(single_losses)
loss_list = np.concatenate(loss_list)
anomaly_scores = np.array([loss / args.customParameters.window_size for loss in loss_list])
anomaly_scores.tofile(args.dataOutput, sep="\n")
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if __name__ == "__main__":
args = AlgorithmArgs.from_sys_args()
set_random_state(args)
if args.executionType == "train":
train(args)
elif args.executionType == "execute":
execute(args)
else:
raise ValueError(f"No executionType '{args.executionType}' available! Choose either 'train' or 'execute'.")