-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
49 lines (34 loc) · 1.16 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import os
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch.nn as nn
from PIL import Image
'''
dataset에서 모든 data 불러오기 -> main.py에서 train test split ->
dataloader -> train
'''
class TitaDataset(Dataset):
def __init__(self, transform = None):
super().__init__()
self.img_dir = "D:\Desktop\project\Tita\data"
self.filenames = os.listdir(self.img_dir)
self.transform = transform
def __getitem__(self, index):
label = MakeLabel(self.filenames, index)
img_path = os.path.join(self.img_dir, self.filenames[index])
img = np.asarray_chkfinite(Image.open(img_path))
if img.dtype == np.uint8:
img = img / 255.0
input = (img, label)
if self.transform:
input = self.transform(input)
return input
def __len__(self):
return len(self.filenames)
def MakeLabel(filenames, index):
input_img = filenames[index]
if "O" in input_img:
label = 1
else : label = 0
return label