-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify_tf.py
64 lines (49 loc) · 1.97 KB
/
classify_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
from tensorflow import keras
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
print('GPU name: ', tf.config.experimental.list_physical_devices('GPU'))
df1 = pd.read_csv('2018_batting.csv')
#df1.drop(columns=['Rk', 'Name', 'Age', 'Lg', 'Tm', 'Pos Summary','Name-additional'], axis=1)
df2 = pd.read_csv('2019_batting.csv')
df3 = pd.read_csv('2020_batting.csv')
df4 = pd.read_csv('2021_batting.csv')
df5 = pd.read_csv('2022_batting.csv')
#print(df1.head)
combined_df = pd.concat([df1, df2, df3, df4, df5], ignore_index=True)
combined_df = combined_df.dropna()
#print(combined_df.head)
X = combined_df.drop(['MVP', 'Name-additional'], axis=1)
Y = combined_df['MVP']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)
batch_size = 64
# Define the RNN model
model = keras.Sequential([
keras.layers.LSTM(64, return_sequences=True, input_shape=(X_train.shape[1], 1)),
keras.layers.LSTM(64),
keras.layers.Dense(1, activation='sigmoid')
])
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Display model summary
model.summary()
# Define Linear Model
# model = keras.Sequential([
# tf.keras.layers.Input(shape=(X_train.shape[1],1)),
# tf.keras.layers.Dense(128, activation='relu'),
# tf.keras.layers.Dense(64, activation='relu'),
# tf.keras.layers.Dense(1, activation='sigmoid')
# ])
# model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# model.summary()
num_epochs = 10 # Adjust as needed
model.fit(X_train, Y_train, epochs=num_epochs, batch_size=batch_size)
test_loss, test_accuracy = model.evaluate(X_test, Y_test, batch_size=batch_size)
model.save("tensorflowRNN_model")
print(f'Accuracy: {test_accuracy}')
# df2023 = pd.read_csv('2023_batting.csv')
# df2023 = df2023.dropna()
# df2023 = df2023.drop(['MVP', 'Name-additional'], axis=1)
# model.predict(df2023)