-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
51 lines (34 loc) · 1.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
from torch.utils.data import DataLoader
#from torch import optim
import utility
import model
import loss
from utility import EBSD_Ti64DIC_Test_dataset, EBSD_Ti64DIC_dataset
from argparser import Argparser
import os
from trainer import Trainer
args = Argparser().args
checkpoint = utility.checkpoint(args)
if checkpoint.ok:
"""
Test Data Loader
"""
import pdb; pdb.set_trace()
lr_data_path = f'/{args.input_dir}/{args.test_dataset_type}/LR_Images/X{args.scale}/preprocessed_imgs_1D'
hr_data_path = f'/{args.input_dir}/{args.test_dataset_type}/HR_Images/preprocessed_imgs_1D'
#lr_data_path = hr_data_path
print(f'LR {args.test_dataset_type} Path: {lr_data_path}')
print(f'HR {args.test_dataset_type} Path: {hr_data_path}')
#lr_data_path = None
#dataset = EBSD_Ti64DIC_Test_dataset(args, lr_data_path, hr_data_path, is_Train=False)
dataset = EBSD_Ti64DIC_dataset(args, lr_data_path, hr_data_path, is_Train=False)
data_loader_test = DataLoader(dataset=dataset, batch_size=args.val_batch_size,
num_workers= 1,
shuffle=False, drop_last=False)
model = model.Model(args, checkpoint)
loss = loss.Loss(args, checkpoint) if not args.test_only else None
data_loader_train = None
data_loader_val = None
t = Trainer(args, data_loader_train, data_loader_val, data_loader_test, model, loss, checkpoint)
t.test(is_trad_results=False)