-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathrun_tgen.py
executable file
·623 lines (512 loc) · 25 KB
/
run_tgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Generating T-trees from dialogue acts.
Usage: ./tgen.py <action> <argument1 ...>
Actions:
candgen_train -- train candidate generator (probability distributions)
- arguments: [-l] [-n] [-p prune_threshold] [-c <lemma|node>:limit] [-s] train-das train-ttrees output-model
* l = create lexicalized candgen (limit using parent lemmas as well as formemes)
* n = engage limits on number of nodes (on depth levels + total number)
* s = enforce compatibility for slots as well
percrank_train -- train perceptron global ranker
- arguments: [-d debug-output] [-c candgen-model] [-s data-portion] [-j parallel-jobs] [-w parallel-work-dir] \\
[-r rand_seed] [-e experiment_id] ranker-config train-das train-ttrees output-model
* r = random seed is used as a string; no seed change if empty string is passed
sample_gen -- sampling generation (oracle experiment; rather obsolete)
- arguments: [-n trees-per-da] [-o oracle-eval-ttrees] [-w output-ttrees] candgen-model test-das
asearch_gen -- generate using the A*search sentence planner
- arguments: [-e eval-ttrees-file] [-s eval-ttrees-selector] [-d debug-output] [-w output-ttrees] \\
[-c config] candgen-model percrank-model test-das
treecl_train -- train a tree classifier (part of candidate generator, accessible externally here)
- arguments: config train-das train-trees treecl-model-file
seq2seq_train -- train a seq2seq generator (via trees or strings)
- arguments: [-d debug-output] [-s data-portion] [-r rand-seed] [-j parallel-models] [-w parallel-work-dir] \\
[-e experiment-id] config train-das train-trees seq2seq-model
seq2seq_gen -- evaluate the seq2seq generator
- arguments: [-e eval-ttrees-file] [-r eval-ttrees-selector] [-t target-selector] [-d debug-output]
[-w output-ttrees] [-b beam-size-override] seq2seq-model test-das
rerank_cl_train -- train the reranking classifier (part of seq2seq generator, accessible
externally here for debugging purposes)
- arguments: config train-das train-trees rerank-cl-model
rerank_cl_eval -- evaluate the reranking classifier (part of seq2seq generator, accessible
externally here for debugging purposes)
- arguments: [-l language] [-s selector] rerank-cl-model test-das test-sents
"""
from __future__ import unicode_literals
import sys
from getopt import getopt
import platform
import os
from argparse import ArgumentParser
from tgen.config import Config
from tgen.logf import log_info, set_debug_stream, log_debug, log_warn
from tgen.futil import file_stream, read_das, read_ttrees, chunk_list, add_bundle_text, \
trees_from_doc, ttrees_from_doc, write_ttrees, tokens_from_doc, read_tokens, write_tokens, \
postprocess_tokens, create_ttree_doc, write_das
from tgen.candgen import RandomCandidateGenerator
from tgen.rank import PerceptronRanker
from tgen.planner import ASearchPlanner, SamplingPlanner
from tgen.eval import p_r_f1_from_counts, corr_pred_gold, f1_from_counts, ASearchListsAnalyzer, \
EvalTypes, Evaluator
from tgen.tree import TreeData
from tgen.parallel_percrank_train import ParallelRanker
from tgen.debug import exc_info_hook
from tgen.rnd import rnd
from tgen.bleu import BLEUMeasure
from tgen.seq2seq import Seq2SeqBase, Seq2SeqGen
from tgen.parallel_seq2seq_train import ParallelSeq2SeqTraining
from tgen.tfclassif import RerankingClassifier
# Start IPdb on error in interactive mode
sys.excepthook = exc_info_hook
def candgen_train(args):
opts, files = getopt(args, 'p:lnc:sd:t:')
prune_threshold = 1
parent_lemmas = False
node_limits = False
comp_type = None
comp_limit = None
comp_slots = False
tree_classif = False
for opt, arg in opts:
if opt == '-p':
prune_threshold = int(arg)
elif opt == '-d':
set_debug_stream(file_stream(arg, mode='w'))
elif opt == '-l':
parent_lemmas = True
elif opt == '-n':
node_limits = True
elif opt == '-c':
comp_type = arg
if ':' in comp_type:
comp_type, comp_limit = comp_type.split(':', 1)
comp_limit = int(comp_limit)
elif opt == '-t':
tree_classif = Config(arg)
elif opt == '-s':
comp_slots = True
if len(files) != 3:
sys.exit("Invalid arguments.\n" + __doc__)
fname_da_train, fname_ttrees_train, fname_cand_model = files
log_info('Training candidate generator...')
candgen = RandomCandidateGenerator({'prune_threshold': prune_threshold,
'parent_lemmas': parent_lemmas,
'node_limits': node_limits,
'compatible_dais_type': comp_type,
'compatible_dais_limit': comp_limit,
'compatible_slots': comp_slots,
'tree_classif': tree_classif})
candgen.train(fname_da_train, fname_ttrees_train)
candgen.save_to_file(fname_cand_model)
def rerank_cl_train(args):
ap = ArgumentParser(prog=' '.join(sys.argv[0:2]))
ap.add_argument('-a', '--add-to-seq2seq', type=str,
help='Replace trained classifier in an existing seq2seq model (path to file)')
ap.add_argument('fname_config', type=str, help='Reranking classifier configuration file path')
ap.add_argument('fname_da_train', type=str, help='Training DAs file path')
ap.add_argument('fname_trees_train', type=str, help='Training trees/sentences file path')
ap.add_argument('fname_cl_model', type=str, help='Path for the output trained model')
args = ap.parse_args(args)
if args.add_to_seq2seq:
tgen = Seq2SeqBase.load_from_file(args.add_to_seq2seq)
config = Config(args.fname_config)
rerank_cl = RerankingClassifier(config)
rerank_cl.train(args.fname_da_train, args.fname_trees_train)
if args.add_to_seq2seq:
tgen.classif_filter = rerank_cl
tgen.save_to_file(args.fname_cl_model)
else:
rerank_cl.save_to_file(args.fname_cl_model)
def treecl_train(args):
from tgen.classif import TreeClassifier
opts, files = getopt(args, '')
if len(files) != 4:
sys.exit("Invalid arguments.\n" + __doc__)
fname_config, fname_da_train, fname_trees_train, fname_cl_model = files
config = Config(fname_config)
treecl = TreeClassifier(config)
treecl.train(fname_da_train, fname_trees_train)
treecl.save_to_file(fname_cl_model)
def percrank_train(args):
opts, files = getopt(args, 'c:d:s:j:w:e:r:')
candgen_model = None
train_size = 1.0
parallel = False
jobs_number = 0
work_dir = None
experiment_id = None
for opt, arg in opts:
if opt == '-d':
set_debug_stream(file_stream(arg, mode='w'))
elif opt == '-s':
train_size = float(arg)
elif opt == '-c':
candgen_model = arg
elif opt == '-j':
parallel = True
jobs_number = int(arg)
elif opt == '-w':
work_dir = arg
elif opt == '-e':
experiment_id = arg
elif opt == '-r' and arg:
rnd.seed(arg)
if len(files) != 4:
sys.exit(__doc__)
fname_rank_config, fname_train_das, fname_train_ttrees, fname_rank_model = files
log_info('Training perceptron ranker...')
rank_config = Config(fname_rank_config)
if candgen_model:
rank_config['candgen_model'] = candgen_model
if rank_config.get('nn'):
from tgen.rank_nn import SimpleNNRanker, EmbNNRanker
if rank_config['nn'] in ['emb', 'emb_trees', 'emb_prev']:
ranker_class = EmbNNRanker
else:
ranker_class = SimpleNNRanker
else:
ranker_class = PerceptronRanker
log_info('Using %s for ranking' % ranker_class.__name__)
if not parallel:
ranker = ranker_class(rank_config)
else:
rank_config['jobs_number'] = jobs_number
if work_dir is None:
work_dir, _ = os.path.split(fname_rank_config)
ranker = ParallelRanker(rank_config, work_dir, experiment_id, ranker_class)
ranker.train(fname_train_das, fname_train_ttrees, data_portion=train_size)
# avoid the "maximum recursion depth exceeded" error
sys.setrecursionlimit(100000)
ranker.save_to_file(fname_rank_model)
def seq2seq_train(args):
ap = ArgumentParser(prog=' '.join(sys.argv[0:2]))
ap.add_argument('-s', '--train-size', type=float,
help='Portion of the training data to use (default: 1.0)', default=1.0)
ap.add_argument('-d', '--debug-logfile', type=str, help='Debug output file name')
ap.add_argument('-j', '--jobs', type=int, help='Number of parallel jobs to use')
ap.add_argument('-w', '--work-dir', type=str, help='Main working directory for parallel jobs')
ap.add_argument('-e', '--experiment-id', type=str,
help='Experiment ID for parallel jobs (used as job name prefix)')
ap.add_argument('-r', '--random-seed', type=str,
help='Initial random seed (used as string).')
ap.add_argument('-c', '--context-file', type=str,
help='Input ttree/text file with context utterances')
ap.add_argument('-v', '--valid-data', type=str,
help='Validation data paths (2-3 comma-separated files: DAs, trees/sentences, contexts)')
ap.add_argument('-l', '--lexic-data', type=str,
help='Lexicalization data paths (1-2 comma-separated files: surface forms,' +
'training lexic. instructions)')
ap.add_argument('-t', '--tb-summary-dir', '--tensorboard-summary-dir', '--tensorboard', type=str,
help='Directory where Tensorboard summaries are saved during training')
ap.add_argument('seq2seq_config_file', type=str, help='Seq2Seq generator configuration file')
ap.add_argument('da_train_file', type=str, help='Input training DAs')
ap.add_argument('tree_train_file', type=str, help='Input training trees/sentences')
ap.add_argument('seq2seq_model_file', type=str,
help='File name where to save the trained Seq2Seq generator model')
args = ap.parse_args(args)
if args.debug_logfile:
set_debug_stream(file_stream(args.debug_logfile, mode='w'))
if args.random_seed:
rnd.seed(args.random_seed)
log_info('Training sequence-to-sequence generator...')
config = Config(args.seq2seq_config_file)
if args.tb_summary_dir: # override Tensorboard setting
config['tb_summary_dir'] = args.tb_summary_dir
if args.jobs: # parallelize when training
config['jobs_number'] = args.jobs
if not args.work_dir:
work_dir, _ = os.path.split(args.seq2seq_config_file)
generator = ParallelSeq2SeqTraining(config, args.work_dir or work_dir, args.experiment_id)
else: # just a single training instance
generator = Seq2SeqGen(config)
generator.train(args.da_train_file, args.tree_train_file,
data_portion=args.train_size, context_file=args.context_file,
validation_files=args.valid_data, lexic_files=args.lexic_data)
sys.setrecursionlimit(100000)
generator.save_to_file(args.seq2seq_model_file)
def sample_gen(args):
from pytreex.core.document import Document
opts, files = getopt(args, 'r:n:o:w:')
num_to_generate = 1
oracle_eval_file = None
fname_ttrees_out = None
for opt, arg in opts:
if opt == '-n':
num_to_generate = int(arg)
elif opt == '-o':
oracle_eval_file = arg
elif opt == '-w':
fname_ttrees_out = arg
if len(files) != 2:
sys.exit(__doc__)
fname_cand_model, fname_da_test = files
# load model
log_info('Initializing...')
candgen = RandomCandidateGenerator.load_from_file(fname_cand_model)
ranker = candgen
tgen = SamplingPlanner({'candgen': candgen, 'ranker': ranker})
# generate
log_info('Generating...')
gen_doc = Document()
das = read_das(fname_da_test)
for da in das:
for _ in xrange(num_to_generate): # repeat generation n times
tgen.generate_tree(da, gen_doc)
# evaluate if needed
if oracle_eval_file is not None:
log_info('Evaluating oracle F1...')
log_info('Loading gold data from ' + oracle_eval_file)
gold_trees = ttrees_from_doc(read_ttrees(oracle_eval_file), tgen.language, tgen.selector)
gen_trees = ttrees_from_doc(gen_doc, tgen.language, tgen.selector)
log_info('Gold data loaded.')
correct, predicted, gold = 0, 0, 0
for gold_tree, gen_trees in zip(gold_trees, chunk_list(gen_trees, num_to_generate)):
# find best of predicted trees (in terms of F1)
_, tc, tp, tg = max([(f1_from_counts(c, p, g), c, p, g) for c, p, g
in map(lambda gen_tree: corr_pred_gold(gold_tree, gen_tree),
gen_trees)],
key=lambda x: x[0])
correct += tc
predicted += tp
gold += tg
# evaluate oracle F1
log_info("Oracle Precision: %.6f, Recall: %.6f, F1: %.6f" % p_r_f1_from_counts(correct, predicted, gold))
# write output
if fname_ttrees_out is not None:
log_info('Writing output...')
write_ttrees(gen_doc, fname_ttrees_out)
def asearch_gen(args):
"""A*search generation"""
from pytreex.core.document import Document
opts, files = getopt(args, 'e:d:w:c:s:')
eval_file = None
fname_ttrees_out = None
cfg_file = None
eval_selector = ''
for opt, arg in opts:
if opt == '-e':
eval_file = arg
elif opt == '-s':
eval_selector = arg
elif opt == '-d':
set_debug_stream(file_stream(arg, mode='w'))
elif opt == '-w':
fname_ttrees_out = arg
elif opt == '-c':
cfg_file = arg
if len(files) != 3:
sys.exit('Invalid arguments.\n' + __doc__)
fname_cand_model, fname_rank_model, fname_da_test = files
log_info('Initializing...')
candgen = RandomCandidateGenerator.load_from_file(fname_cand_model)
ranker = PerceptronRanker.load_from_file(fname_rank_model)
cfg = Config(cfg_file) if cfg_file else {}
cfg.update({'candgen': candgen, 'ranker': ranker})
tgen = ASearchPlanner(cfg)
log_info('Generating...')
das = read_das(fname_da_test)
if eval_file is None:
gen_doc = Document()
else:
eval_doc = read_ttrees(eval_file)
if eval_selector == tgen.selector:
gen_doc = Document()
else:
gen_doc = eval_doc
# generate and evaluate
if eval_file is not None:
# generate + analyze open&close lists
lists_analyzer = ASearchListsAnalyzer()
for num, (da, gold_tree) in enumerate(zip(das,
trees_from_doc(eval_doc, tgen.language, eval_selector)),
start=1):
log_debug("\n\nTREE No. %03d" % num)
gen_tree = tgen.generate_tree(da, gen_doc)
lists_analyzer.append(gold_tree, tgen.open_list, tgen.close_list)
if gen_tree != gold_tree:
log_debug("\nDIFFING TREES:\n" + tgen.ranker.diffing_trees_with_scores(da, gold_tree, gen_tree) + "\n")
log_info('Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %4f' % lists_analyzer.stats())
# evaluate the generated trees against golden trees
eval_ttrees = ttrees_from_doc(eval_doc, tgen.language, eval_selector)
gen_ttrees = ttrees_from_doc(gen_doc, tgen.language, tgen.selector)
log_info('Evaluating...')
evaler = Evaluator()
for eval_bundle, eval_ttree, gen_ttree, da in zip(eval_doc.bundles, eval_ttrees, gen_ttrees, das):
# add some stats about the tree directly into the output file
add_bundle_text(eval_bundle, tgen.language, tgen.selector + 'Xscore',
"P: %.4f R: %.4f F1: %.4f" % p_r_f1_from_counts(*corr_pred_gold(eval_ttree, gen_ttree)))
# collect overall stats
evaler.append(eval_ttree,
gen_ttree,
ranker.score(TreeData.from_ttree(eval_ttree), da),
ranker.score(TreeData.from_ttree(gen_ttree), da))
# print overall stats
log_info("NODE precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1())
log_info("DEP precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1(EvalTypes.DEP))
log_info("Tree size stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.size_stats())
log_info("Score stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.score_stats())
log_info("Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" %
evaler.common_substruct_stats())
# just generate
else:
for da in das:
tgen.generate_tree(da, gen_doc)
# write output
if fname_ttrees_out is not None:
log_info('Writing output...')
write_ttrees(gen_doc, fname_ttrees_out)
def seq2seq_gen(args):
"""Sequence-to-sequence generation"""
def write_trees_or_tokens(output_file, das, gen_trees, base_doc, language, selector):
"""Decide to write t-trees or tokens based on the output file name."""
if output_file.endswith('.txt'):
gen_toks = [t.to_tok_list() for t in gen_trees]
postprocess_tokens(gen_toks, das)
write_tokens(gen_toks, output_file)
else:
write_ttrees(create_ttree_doc(gen_trees, base_doc, language, selector), output_file)
ap = ArgumentParser(prog=' '.join(sys.argv[0:2]))
ap.add_argument('-e', '--eval-file', type=str, help='A ttree/text file for evaluation')
ap.add_argument('-a', '--abstr-file', type=str,
help='Lexicalization file (a.k.a. abstraction instructions, for postprocessing)')
ap.add_argument('-r', '--ref-selector', type=str, default='',
help='Selector for reference trees in the evaluation file')
ap.add_argument('-t', '--target-selector', type=str, default='',
help='Target selector for generated trees in the output file')
ap.add_argument('-d', '--debug-logfile', type=str, help='Debug output file name')
ap.add_argument('-w', '--output-file', type=str, help='Output tree/text file')
ap.add_argument('-D', '--delex-output-file', type=str, help='Output file for trees/text before lexicalization')
ap.add_argument('-b', '--beam-size', type=int,
help='Override beam size for beam search decoding')
ap.add_argument('-c', '--context-file', type=str,
help='Input ttree/text file with context utterances')
ap.add_argument('seq2seq_model_file', type=str, help='Trained Seq2Seq generator model')
ap.add_argument('da_test_file', type=str, help='Input DAs for generation')
args = ap.parse_args(args)
if args.debug_logfile:
set_debug_stream(file_stream(args.debug_logfile, mode='w'))
# load the generator
tgen = Seq2SeqBase.load_from_file(args.seq2seq_model_file)
if args.beam_size is not None:
tgen.beam_size = args.beam_size
# read input files (DAs, contexts)
das = read_das(args.da_test_file)
if args.context_file:
if not tgen.use_context and not tgen.context_bleu_weight:
log_warn('Generator is not trained to use context, ignoring context input file.')
else:
if args.context_file.endswith('.txt'):
contexts = read_tokens(args.context_file)
else:
contexts = tokens_from_doc(read_ttrees(args.context_file),
tgen.language, tgen.selector)
das = [(context, da) for context, da in zip(contexts, das)]
elif tgen.use_context or tgen.context_bleu_weight:
log_warn('Generator is trained to use context. ' +
'Using empty contexts, expect lower performance.')
das = [([], da) for da in das]
# generate
log_info('Generating...')
gen_trees = []
for num, da in enumerate(das, start=1):
log_debug("\n\nTREE No. %03d" % num)
gen_trees.append(tgen.generate_tree(da))
if num % 100 == 0:
log_info("Generated tree %d" % num)
log_info(tgen.get_slot_err_stats())
if args.delex_output_file is not None:
log_info('Writing delex output...')
write_trees_or_tokens(args.delex_output_file, das, gen_trees, None,
tgen.language, args.target_selector or tgen.selector)
# evaluate the generated trees against golden trees (delexicalized)
eval_doc = None
if args.eval_file and not args.eval_file.endswith('.txt'):
eval_doc = read_ttrees(args.eval_file)
evaler = Evaluator()
evaler.process_eval_doc(eval_doc, gen_trees, tgen.language, args.ref_selector,
args.target_selector or tgen.selector)
# lexicalize, if required
if args.abstr_file and tgen.lexicalizer:
log_info('Lexicalizing...')
tgen.lexicalize(gen_trees, args.abstr_file)
# we won't need contexts anymore, but we do need DAs
if tgen.use_context or tgen.context_bleu_weight:
das = [da for _, da in das]
# evaluate the generated & lexicalized tokens (F1 and BLEU scores)
if args.eval_file and args.eval_file.endswith('.txt'):
eval_tokens(das, read_tokens(args.eval_file, ref_mode=True),
[t.to_tok_list() for t in gen_trees])
# write output .yaml.gz or .txt
if args.output_file is not None:
log_info('Writing output...')
write_trees_or_tokens(args.output_file, das, gen_trees, eval_doc,
tgen.language, args.target_selector or tgen.selector)
def eval_tokens(das, eval_tokens, gen_tokens):
"""Evaluate generated tokens and print out statistics."""
postprocess_tokens(eval_tokens, das)
postprocess_tokens(gen_tokens, das)
evaluator = BLEUMeasure()
for pred_sent, gold_sents in zip(gen_tokens, eval_tokens):
evaluator.append(pred_sent, gold_sents)
log_info("BLEU score: %.4f" % (evaluator.bleu() * 100))
evaluator = Evaluator()
for pred_sent, gold_sents in zip(gen_tokens, eval_tokens):
for gold_sent in gold_sents: # effectively an average over all gold paraphrases
evaluator.append(gold_sent, pred_sent)
log_info("TOKEN precision: %.4f, Recall: %.4f, F1: %.4f" % evaluator.p_r_f1(EvalTypes.TOKEN))
log_info("Sentence length stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaluator.size_stats())
log_info("Common subphrase stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" %
evaluator.common_substruct_stats())
def rerank_cl_eval(args):
ap = ArgumentParser(prog=' '.join(sys.argv[0:2]))
ap.add_argument('-l', '--language', type=str,
help='Override classifier language (for t-tree input files)')
ap.add_argument('-s', '--selector', type=str,
help='Override classifier selector (for t-tree input files)')
ap.add_argument('-w', '--write-classif', type=str,
help='Write classification output to a file.')
ap.add_argument('fname_cl_model', type=str, help='Path to trained reranking classifier model')
ap.add_argument('fname_test_da', type=str, help='Path to test DA file')
ap.add_argument('fname_test_sent', type=str, help='Path to test trees/sentences file')
args = ap.parse_args(args)
log_info("Loading reranking classifier...")
rerank_cl = RerankingClassifier.load_from_file(args.fname_cl_model)
if args.language is not None:
rerank_cl.language = args.language
if args.selector is not None:
rerank_cl.selector = args.selector
log_info("Evaluating...")
tot_len, dist, classifs = rerank_cl.evaluate_file(args.fname_test_da, args.fname_test_sent)
log_info("Penalty: %d, Total DAIs %d." % (dist, tot_len))
if args.write_classif is not None:
write_das(classifs, args.write_classif)
if __name__ == '__main__':
if len(sys.argv) < 2:
sys.exit(__doc__)
action = sys.argv[1]
args = sys.argv[2:]
log_info('Running on %s version %s' % (platform.python_implementation(),
platform.python_version()))
if action == 'candgen_train':
candgen_train(args)
elif action == 'percrank_train':
percrank_train(args)
elif action == 'sample_gen':
sample_gen(args)
elif action == 'asearch_gen':
asearch_gen(args)
elif action == 'seq2seq_train':
seq2seq_train(args)
elif action == 'seq2seq_gen':
seq2seq_gen(args)
elif action == 'treecl_train':
treecl_train(args)
elif action == 'rerank_cl_train':
rerank_cl_train(args)
elif action == 'rerank_cl_eval':
rerank_cl_eval(args)
else:
# Unknown action
sys.exit(("\nERROR: Unknown Tgen action: %s\n\n---" % action) + __doc__)
log_info('Done.')