-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathdemo_modelcomp_pvalue.py
45 lines (34 loc) · 1.27 KB
/
demo_modelcomp_pvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import scipy
import pickle
import numpy as np
from pathlib import Path
from scipy.stats import wilcoxon
from argparse import ArgumentParser
from survival4D.paths import DATA_DIR
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"-d", "--data-dir", dest="data_dir", type=str, default=None, help="Directory where the data file is."
)
return parser.parse_args()
def p_reader(pfile):
with open(pfile, 'rb') as f:
mlist = pickle.load(f)
return mlist[0], mlist[1]
def main():
args = parse_args()
if args.data_dir is None:
data_dir = DATA_DIR
else:
data_dir = Path(args.data_dir)
C_app_model1, opts_model1 = p_reader(str(data_dir.joinpath("modelCstats_DL.pkl")))
C_app_model2, opts_model2 = p_reader(str(data_dir.joinpath("modelCstats_conv.pkl")))
Cb_adjs_model1 = [C_app_model1 - o for o in opts_model1]
Cb_adjs_model2 = [C_app_model2 - o for o in opts_model2]
pval = scipy.stats.wilcoxon(Cb_adjs_model1, Cb_adjs_model2)
print(
'Model 1 optimism-adjusted concordance index = {0:.4f}\nModel 2 optimism-adjusted concordance index = {1:.4f}\n'
'p-value = {2}'.format(np.mean(Cb_adjs_model1), np.mean(Cb_adjs_model2), pval.pvalue)
)
if __name__ == '__main__':
main()