-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_Tracking_Score_Test.py
136 lines (91 loc) · 3.81 KB
/
training_Tracking_Score_Test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import dgl
import dgl.function as fn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, Sampler
import numpy as np
import h5py
import torch
import torch.nn as nn
import torch.optim as optim
import math
import uproot#3 as uproot
import numpy as np
import pandas as pd
from tqdm import tqdm
import csv
torch.manual_seed(0)
import os, sys
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", help="choose the model type", type=str)
args = parser.parse_args()
model_name = args.model_name
os.environ["CUDA_VISIBLE_DEVICES"]="0"
#os.environ["CUDA_LAUNCH_BLOCKING"]='1'
cuda_device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' )
print('cuda_device : ', cuda_device)
from modules.OneTrackDataloader import OneTrackDataset, collate_graphs
from modules.dynamic_graph import Dynamic_Graph_Model
path = '/data/wachan/ds100/OneTrackSamples/evt1000/'
#data_set_train = OneTrackDataset(path,num_start=1, num_end=536)
#data_set_valid = OneTrackDataset(path,num_start=537, num_end=1072)
data_set_train = OneTrackDataset(path,num_start=1, num_end=2)
data_set_valid = OneTrackDataset(path,num_start=11, num_end=20)
train_loader = DataLoader(data_set_train, batch_size=1, shuffle=True,collate_fn=collate_graphs, num_workers=0)
valid_loader = DataLoader(data_set_valid, batch_size=1, shuffle=False,collate_fn=collate_graphs, num_workers=0)
#model = Dynamic_Graph_Model(feature_dims_x = [4,6,8,10,12,3], feature_dims_en = [4,6,8,10,12,4])
model = Dynamic_Graph_Model(feature_dims_x = [4,6,8,10,3], feature_dims_en = [4,6,8,10,4])
#model = Dynamic_Graph_Model(feature_dims_x = [4,6,18,3], feature_dims_en = [4,6,18,4])
model_name = 'model_DynamicGraphTrack_Score_Test_NewOutput_2.pt'
model.to(cuda_device)
print( 'Model Cuda : ', next(model.parameters()).is_cuda )
#opt = optim.AdamW(model.parameters(), lr=1e-4)
opt = optim.AdamW(model.parameters(), lr=1e-4)
#scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.1)
# ---------------- Make the training loop ----------------- #
train_loss_v, valid_loss_v = [], []
train_loss_s, valid_loss_s = [], []
# number of epochs to train the model
#n_epochs = 10
n_epochs = 500
valid_loss_min = np.Inf # track change in validation loss
loss_fn = nn.MSELoss()
#loss_fn = nn.L1Loss()
loss_fn_score = nn.CrossEntropyLoss()
for epoch in tqdm(range(1, n_epochs+1)):
# keep track of training and validation loss
train_loss = 0.0
train_loss_sc = 0.0
###################
# train the model #
###################
#scheduler.step()
model.train() ## --- set the model to train mode -- ##
with tqdm(train_loader, ascii=True) as tq:
for graph, label, score in tq:
#label = label.to(cuda_device).float()
score = score.to(cuda_device)
opt.zero_grad()
#pred_label = [ model(ig.to(cuda_device)) for ig in gr_list][0][0]
pred_score = model(graph[0].to(cuda_device))[1]
#print (pred_score)
#loss = loss_fn(pred_label, label)
loss_score = loss_fn_score(pred_score, score)
total_loss = loss_score
total_loss.backward()
opt.step()
train_loss += total_loss.item()
del graph; del score; del pred_score;
torch.cuda.empty_cache()
# calculate average losses
#Need to add here the score loss as well
train_loss = train_loss/len(train_loader.dataset)
# print training/validation statistics
print('Epoch: {} \tTraining Loss: {:.6f}'.format(
epoch, train_loss))#, valid_loss))
train_loss_v.append(train_loss)
#train_loss_s.append(train_loss_sc)
hf = h5py.File('loss_epoch_file_Train_Only_3LayerTest_NewOutput_2.h5', 'w')
hf.create_dataset('train_loss', data=np.array(train_loss_v))
hf.close()
# ---- end of script ------ #