-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest1.py
205 lines (146 loc) · 4.97 KB
/
test1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 3 10:33:12 2019
@author: Mountassir Youssef
"""
import numpy as np
import librosa
import matplotlib.pyplot as plt
import os
from glob import glob
import librosa.display
import pickle
#files retrieval
EXT = "*.wav"
directory= "D:/bural/cours/projet/speech_commands_v0.01"
directory2= "D:/bural/cours/projet/test"
l=[os.path.basename(x[0]) for x in os.walk(directory)]
print(l[1:])
l.pop(0)
data=[]
for path, subdir, files in os.walk(directory):
for file in glob(os.path.join(path, EXT)) :
data.append([file,os.path.basename(path)])
print(data[0])
data_test=[]
for path, subdir, files in os.walk(directory2):
for file in glob(os.path.join(path, EXT)) :
data_test.append([file,os.path.basename(path)])
"""
direc = [file
for path, subdir, files in os.walk(directory)
for file in glob(os.path.join(path, EXT))]
"""
#print(direc)
F = []
#load the files
#print(data[0][0])
#y, sr = librosa.load(data[0][0])
#S, phase = librosa.magphase(librosa.stft(y=y))
#librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), y_axis='log', x_axis='time')
#plt.show()
#
#
import tensorflow as tf
"""
#pre working on the data
x_train=[]
i=0
for d in data:
y, sr = librosa.load(d[0])
f1 = librosa.feature.chroma_stft(y,sr)
x_train.append(f1)
i+=1
if i%1000==0 :
print(i)
#x_train=[librosa.feature.chroma_stft(librosa.load(data[i][0])) for i in range(len(data))]
y_train=[l.index(d[1]) for d in data]
x_test=[]
i=0
for d in data_test:
y, sr = librosa.load(d[0])
f1 = librosa.feature.chroma_stft(y,sr)
x_test.append(f1)
i+=1
if i%1000==0 :
print(i)
y_test=[l.index(d[1]) for d in data_test]
#(x_train, y_train),(x_test, y_test) = mnist.load_data()
#print(x_train[0])
#reshape somme audio
maxdiml=[]
for i in range(len(x_train)):
maxdiml.append(np.size(x_train[i],1))
# print(type(x_train[i]))
# print(np.size(x_train[i],0))
# print(np.size(x_train[i],1))
index_max= maxdiml.index(max(maxdiml))
max_size=np.size(x_train[index_max],1)
for i in range(len(x_train)):
if np.size(x_train[i],1) != max_size:
x_train[i] = np.append(x_train[i],np.zeros([12,max_size-np.size(x_train[i],1)]),axis=1)
maxdiml=[]
for i in range(len(x_test)):
maxdiml.append(np.size(x_test[i],1))
# print(type(x_train[i]))
# print(np.size(x_train[i],0))
# print(np.size(x_train[i],1))
index_max= maxdiml.index(max(maxdiml))
max_size=np.size(x_test[index_max],1)
for i in range(len(x_test)):
if np.size(x_test[i],1) != max_size:
x_test[i] = np.append(x_test[i],np.zeros([12,max_size-np.size(x_test[i],1)]),axis=1)
#convert lists into arrays
y_train = np.array(y_train)
x_train = np.stack(x_train)
#x_train = np.vstack(x_train)
x_test = np.stack(x_test)
y_test = np.array(y_test)
print(np.size(x_train,0))
print(np.size(x_train,1))
print(np.size(x_train,2))
#saving data
print("pickling")
f=open( "dataset.dts", "wb" )
pickle.dump([x_train,y_train,x_test,y_test,l],f)
f.close()
"""
#f=open("dataset.dts","rb")
#x_train,y_train,x_test,y_test,labels = pickle.load(f)
#f.close()
#print(labels)
f=open("D:/bural/cours/projet/data_image_small_2.dtsim", "rb" )
x_train,y_train,x_test,y_test,l=pickle.load(f)
f.close()
x_train = tf.keras.utils.normalize(x_train, axis=1)
import matplotlib.pyplot as plt
#x_train = tf.keras.utils.normalize(x_train,order=2, axis=1)
#x_test = tf.keras.utils.normalize(x_test,order=2, axis=1)
#print(x_train[0])
"""
https://towardsdatascience.com/boost-your-cnn-image-classifier-performance-with-progressive-resizing-in-keras-a7d96da06e20
"""
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3), input_shape=(54, 84, 4),activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Conv2D(32, (3, 3),activation=tf.nn.relu))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
#model.add(tf.keras.layers.Conv2D(32, (3, 3),activation=tf.nn.relu))
#model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Conv2D(32, (3, 3),activation=tf.nn.relu))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(30, activation=tf.nn.softmax))
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10)
#◙model.save("premier_testv4_bigerimg_RMSprop.h5")
#f=open( "data_test_image.dtsim", "rb" )
#x_test,y_test=pickle.load(f)
#f.close()
x_test = tf.keras.utils.normalize(x_test, axis=1)
val_loss, val_acc = model.evaluate(x_test, y_test,verbose=0)
print(val_loss)
print(val_acc)