This repository has been archived by the owner on Apr 2, 2023. It is now read-only.
forked from 4Tron/Adaptive-Traffic-Signal-Control-System
-
Notifications
You must be signed in to change notification settings - Fork 17
/
multithreading.py
232 lines (171 loc) · 9.02 KB
/
multithreading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from tracking.centroidtracker import CentroidTracker
from tracking.trackableobject import TrackableObject
import tensornets as nets
import cv2
import numpy as np
import time
import dlib
import tensorflow.compat.v1 as tf
import os
import threading
def countVehicles(param):
# param -> path of the video
# list -> number of vehicles will be written in the list
# index ->Index at which data has to be written
tf.disable_v2_behavior()
# Image size must be '416x416' as YoloV3 network expects that specific image size as input
img_size = 416
inputs = tf.placeholder(tf.float32, [None, img_size, img_size, 3])
model = nets.YOLOv3COCO(inputs, nets.Darknet19)
ct = CentroidTracker(maxDisappeared=5, maxDistance=50) # Look into 'CentroidTracker' for further info about parameters
trackers = [] # List of all dlib trackers
trackableObjects = {} # Dictionary of trackable objects containing object's ID and its' corresponding centroid/s
skip_frames = 10 # Numbers of frames to skip from detecting
confidence_level = 0.40 # The confidence level of a detection
total = 0 # Total number of detected objects from classes of interest
use_original_video_size_as_output_size = True # Shows original video as output and not the 416x416 image that is used as yolov3 input (NOTE: Detection still happens with 416x416 img size but the output is displayed in original video size if this parameter is True)
video_path = os.getcwd() + param # "/videos/4.mp4"
video_name = os.path.basename(video_path)
# print("Loading video {video_path}...".format(video_path=video_path))
if not os.path.exists(video_path):
print("File does not exist. Exited.")
exit()
# YoloV3 detects 80 classes represented below
all_classes = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", \
"boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", \
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", \
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", \
"sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", \
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", \
"apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", \
"chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse", \
"remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", \
"book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"]
# Classes of interest (with their corresponding indexes for easier looping)
classes = { 1 : 'bicycle', 2 : 'car', 3 : 'motorbike', 5 : 'bus', 7 : 'truck' }
with tf.Session() as sess:
sess.run(model.pretrained())
cap = cv2.VideoCapture(video_path)
# Get video size (just for log purposes)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Scale used for output window size and net size
width_scale = 1
height_scale = 1
if use_original_video_size_as_output_size:
width_scale = width / img_size
height_scale = height / img_size
def drawRectangleCV2(img, pt1, pt2, color, thickness, width_scale=width_scale, height_scale=height_scale):
point1 = (int(pt1[0] * width_scale), int(pt1[1] * height_scale))
point2 = (int(pt2[0] * width_scale), int(pt2[1] * height_scale))
return cv2.rectangle(img, point1, point2, color, thickness)
def drawTextCV2(img, text, pt, font, font_scale, color, lineType, width_scale=width_scale, height_scale=height_scale):
pt = (int(pt[0] * width_scale), int(pt[1] * height_scale))
cv2.putText(img, text, pt, font, font_scale, color, lineType)
def drawCircleCV2(img, center, radius, color, thickness, width_scale=width_scale, height_scale=height_scale):
center = (int(center[0] * width_scale), int(center[1] * height_scale))
cv2.circle(img, center, radius, color, thickness)
# Python 3.5.6 does not support f-strings (next line will generate syntax error)
#print(f"Loaded {video_path}. Width: {width}, Height: {height}")
# print("Loaded {video_path}. Width: {width}, Height: {height}".format(video_path=video_path, width=width, height=height))
skipped_frames_counter = 0
while(cap.isOpened()):
try :
ret, frame = cap.read()
img = cv2.resize(frame, (img_size, img_size))
except:
print(total_str)
output_img = frame if use_original_video_size_as_output_size else img
tracker_rects = []
if skipped_frames_counter == skip_frames:
# Detecting happens after number of frames have passes specified by 'skip_frames' variable value
# print("[DETECTING]")
trackers = []
skipped_frames_counter = 0 # reset counter
np_img = np.array(img).reshape(-1, img_size, img_size, 3)
start_time=time.time()
predictions = sess.run(model.preds, {inputs: model.preprocess(np_img)})
# print("Detection took %s seconds" % (time.time() - start_time))
# model.get_boxes returns a 80 element array containing information about detected classes
# each element contains a list of detected boxes, confidence level ...
detections = model.get_boxes(predictions, np_img.shape[1:3])
np_detections = np.array(detections)
# Loop only through classes we are interested in
for class_index in classes.keys():
local_count = 0
class_name = classes[class_index]
# Loop through detected infos of a class we are interested in
for i in range(len(np_detections[class_index])):
box = np_detections[class_index][i]
if np_detections[class_index][i][4] >= confidence_level:
# print("Detected ", class_name, " with confidence of ", np_detections[class_index][i][4])
local_count += 1
startX, startY, endX, endY = box[0], box[1], box[2], box[3]
drawRectangleCV2(output_img, (startX, startY), (endX, endY), (0, 255, 0), 1)
drawTextCV2(output_img, class_name, (startX, startY), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 255), 1)
# Construct a dlib rectangle object from the bounding box coordinates and then start the dlib correlation
tracker = dlib.correlation_tracker()
rect = dlib.rectangle(int(startX), int(startY), int(endX), int(endY))
tracker.start_track(img, rect)
# Add the tracker to our list of trackers so we can utilize it during skip frames
trackers.append(tracker)
# Write the total number of detected objects for a given class on this frame
# print(class_name," : ", local_count)
else:
# If detection is not happening then track previously detected objects (if any)
# print("[TRACKING]")
skipped_frames_counter += 1 # Increase the number frames for which we did not use detection
# Loop through tracker, update each of them and display their rectangle
for tracker in trackers:
tracker.update(img)
pos = tracker.get_position()
# Unpack the position object
startX = int(pos.left())
startY = int(pos.top())
endX = int(pos.right())
endY = int(pos.bottom())
# Add the bounding box coordinates to the tracking rectangles list
tracker_rects.append((startX, startY, endX, endY))
# Draw tracking rectangles
drawRectangleCV2(output_img, (startX, startY), (endX, endY), (255, 0, 0), 1)
# Use the centroid tracker to associate the (1) old object centroids with (2) the newly computed object centroids
objects = ct.update(tracker_rects)
# Loop over the tracked objects
for (objectID, centroid) in objects.items():
# Check to see if a trackable object exists for the current object ID
to = trackableObjects.get(objectID, None)
if to is None:
# If there is no existing trackable object, create one
to = TrackableObject(objectID, centroid)
else:
to.centroids.append(centroid)
# If the object has not been counted, count it and mark it as counted
if not to.counted:
total += 1
to.counted = True
# Store the trackable object in our dictionary
trackableObjects[objectID] = to
# Draw both the ID of the object and the centroid of the object on the output frame
object_id = "ID {}".format(objectID)
drawTextCV2(output_img, object_id, (centroid[0] - 10, centroid[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
drawCircleCV2(output_img, (centroid[0], centroid[1]), 2, (0, 255, 0), -1)
# Display the total count so far
total_str = str(total)
drawTextCV2(output_img, total_str, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# Display the current frame (with all annotations drawn up to this point)
cv2.imshow(video_name, output_img)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'): # QUIT (exits)
break
elif key == ord('p'):
cv2.waitKey(0) # PAUSE (Enter any key to continue)
cap.release()
cv2.destroyAllWindows()
print("Exited")
"""
function which will run our code
will write the number of veicles in the list provided
"""
if __name__ == "__main__":
countVehicles("/videos/test.mp4")
# Logic for setting the time for each signal