-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathmain.py
174 lines (125 loc) · 5.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import glob
import torch
import random
import logging
import numpy as np
from tqdm import tqdm
import torch.nn as nn
import torch.utils.data
import torch.optim as optim
from common.opt import opts
from common.utils import *
from common.load_data_hm36 import Fusion
from common.h36m_dataset import Human36mDataset
from model.mhformer import Model
opt = opts().parse()
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
def train(opt, actions, train_loader, model, optimizer, epoch):
return step('train', opt, actions, train_loader, model, optimizer, epoch)
def val(opt, actions, val_loader, model):
with torch.no_grad():
return step('test', opt, actions, val_loader, model)
def step(split, opt, actions, dataLoader, model, optimizer=None, epoch=None):
loss_all = {'loss': AccumLoss()}
action_error_sum = define_error_list(actions)
if split == 'train':
model.train()
else:
model.eval()
for i, data in enumerate(tqdm(dataLoader, 0)):
batch_cam, gt_3D, input_2D, action, subject, scale, bb_box, cam_ind = data
[input_2D, gt_3D, batch_cam, scale, bb_box] = get_varialbe(split, [input_2D, gt_3D, batch_cam, scale, bb_box])
if split =='train':
output_3D = model(input_2D)
else:
input_2D, output_3D = input_augmentation(input_2D, model)
out_target = gt_3D.clone()
out_target[:, :, 0] = 0
if split == 'train':
loss = mpjpe_cal(output_3D, out_target)
N = input_2D.size(0)
loss_all['loss'].update(loss.detach().cpu().numpy() * N, N)
optimizer.zero_grad()
loss.backward()
optimizer.step()
elif split == 'test':
output_3D = output_3D[:, opt.pad].unsqueeze(1)
output_3D[:, :, 0, :] = 0
action_error_sum = test_calculation(output_3D, out_target, action, action_error_sum, opt.dataset, subject)
if split == 'train':
return loss_all['loss'].avg
elif split == 'test':
p1, p2 = print_error(opt.dataset, action_error_sum, opt.train)
return p1, p2
def input_augmentation(input_2D, model):
joints_left = [4, 5, 6, 11, 12, 13]
joints_right = [1, 2, 3, 14, 15, 16]
input_2D_non_flip = input_2D[:, 0]
input_2D_flip = input_2D[:, 1]
output_3D_non_flip = model(input_2D_non_flip)
output_3D_flip = model(input_2D_flip)
output_3D_flip[:, :, :, 0] *= -1
output_3D_flip[:, :, joints_left + joints_right, :] = output_3D_flip[:, :, joints_right + joints_left, :]
output_3D = (output_3D_non_flip + output_3D_flip) / 2
input_2D = input_2D_non_flip
return input_2D, output_3D
if __name__ == '__main__':
opt.manualSeed = 1
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.train:
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y/%m/%d %H:%M:%S', \
filename=os.path.join(opt.checkpoint, 'train.log'), level=logging.INFO)
root_path = opt.root_path
dataset_path = root_path + 'data_3d_' + opt.dataset + '.npz'
dataset = Human36mDataset(dataset_path, opt)
actions = define_actions(opt.actions)
if opt.train:
train_data = Fusion(opt=opt, train=True, dataset=dataset, root_path=root_path)
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=opt.batch_size,
shuffle=True, num_workers=int(opt.workers), pin_memory=True)
test_data = Fusion(opt=opt, train=False, dataset=dataset, root_path =root_path)
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=opt.batch_size,
shuffle=False, num_workers=int(opt.workers), pin_memory=True)
model = Model(opt).cuda()
model_dict = model.state_dict()
if opt.previous_dir != '':
model_paths = sorted(glob.glob(os.path.join(opt.previous_dir, '*.pth')))
for path in model_paths:
if path.split('/')[-1].startswith('model'):
model_path = path
print(model_path)
pre_dict = torch.load(model_path)
model_dict = model.state_dict()
state_dict = {k: v for k, v in pre_dict.items() if k in model_dict.keys()}
model_dict.update(state_dict)
model.load_state_dict(model_dict)
all_param = []
lr = opt.lr
all_param += list(model.parameters())
optimizer = optim.Adam(all_param, lr=opt.lr, amsgrad=True)
for epoch in range(1, opt.nepoch):
if opt.train:
loss = train(opt, actions, train_dataloader, model, optimizer, epoch)
p1, p2 = val(opt, actions, test_dataloader, model)
if opt.train:
save_model_epoch(opt.checkpoint, epoch, model)
if p1 < opt.previous_best_threshold:
opt.previous_name = save_model(opt.previous_name, opt.checkpoint, epoch, p1, model)
opt.previous_best_threshold = p1
if opt.train == 0:
print('p1: %.2f, p2: %.2f' % (p1, p2))
break
else:
logging.info('epoch: %d, lr: %.7f, loss: %.4f, p1: %.2f, p2: %.2f' % (epoch, lr, loss, p1, p2))
print('e: %d, lr: %.7f, loss: %.4f, p1: %.2f, p2: %.2f' % (epoch, lr, loss, p1, p2))
if epoch % opt.large_decay_epoch == 0:
for param_group in optimizer.param_groups:
param_group['lr'] *= opt.lr_decay_large
lr *= opt.lr_decay_large
else:
for param_group in optimizer.param_groups:
param_group['lr'] *= opt.lr_decay
lr *= opt.lr_decay
print(opt.checkpoint)