-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmain.py
227 lines (173 loc) · 8.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import glob
import torch
import random
import logging
import numpy as np
from tqdm import tqdm
import torch.nn as nn
import torch.utils.data
import torch.optim as optim
from common.opt import opts
from common.utils import *
from common.camera import get_uvd2xyz
from common.load_data_hm36 import Fusion
from common.h36m_dataset import Human36mDataset
from model.block.refine import refine
from model.strided_transformer import Model
opt = opts().parse()
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
def train(opt, actions, train_loader, model, optimizer, epoch):
return step('train', opt, actions, train_loader, model, optimizer, epoch)
def val(opt, actions, val_loader, model):
with torch.no_grad():
return step('test', opt, actions, val_loader, model)
def step(split, opt, actions, dataLoader, model, optimizer=None, epoch=None):
model_trans = model['trans']
model_refine = model['refine']
if split == 'train':
model_trans.train()
model_refine.train()
else:
model_trans.eval()
model_refine.eval()
loss_all = {'loss': AccumLoss()}
action_error_sum = define_error_list(actions)
action_error_sum_refine = define_error_list(actions)
for i, data in enumerate(tqdm(dataLoader, 0)):
batch_cam, gt_3D, input_2D, action, subject, scale, bb_box, cam_ind = data
[input_2D, gt_3D, batch_cam, scale, bb_box] = get_varialbe(split, [input_2D, gt_3D, batch_cam, scale, bb_box])
if split =='train':
output_3D, output_3D_VTE = model_trans(input_2D)
else:
input_2D, output_3D, output_3D_VTE = input_augmentation(input_2D, model_trans)
out_target = gt_3D.clone()
out_target[:, :, 0] = 0
if out_target.size(1) > 1:
out_target_single = out_target[:, opt.pad].unsqueeze(1)
gt_3D_single = gt_3D[:, opt.pad].unsqueeze(1)
else:
out_target_single = out_target
gt_3D_single = gt_3D
if opt.refine:
pred_uv = input_2D[:, opt.pad, :, :].unsqueeze(1)
uvd = torch.cat((pred_uv, output_3D[:, :, :, 2].unsqueeze(-1)), -1)
xyz = get_uvd2xyz(uvd, gt_3D_single, batch_cam)
xyz[:, :, 0, :] = 0
output_3D = model_refine(output_3D, xyz)
if split == 'train':
if opt.refine:
loss = mpjpe_cal(output_3D, out_target_single)
else:
loss = mpjpe_cal(output_3D_VTE, out_target) + mpjpe_cal(output_3D, out_target_single)
N = input_2D.size(0)
loss_all['loss'].update(loss.detach().cpu().numpy() * N, N)
optimizer.zero_grad()
loss.backward()
optimizer.step()
elif split == 'test':
output_3D[:, :, 0, :] = 0
action_error_sum = test_calculation(output_3D, out_target, action, action_error_sum, opt.dataset, subject)
if opt.refine:
output_3D[:, :, 0, :] = 0
action_error_sum_refine = test_calculation(output_3D, out_target, action, action_error_sum_refine, opt.dataset, subject)
if split == 'train':
return loss_all['loss'].avg
elif split == 'test':
if opt.refine:
p1, p2 = print_error(opt.dataset, action_error_sum_refine, opt.train)
else:
p1, p2 = print_error(opt.dataset, action_error_sum, opt.train)
return p1, p2
def input_augmentation(input_2D, model_trans):
joints_left = [4, 5, 6, 11, 12, 13]
joints_right = [1, 2, 3, 14, 15, 16]
input_2D_non_flip = input_2D[:, 0]
input_2D_flip = input_2D[:, 1]
output_3D_non_flip, output_3D_non_flip_VTE = model_trans(input_2D_non_flip)
output_3D_flip, output_3D_flip_VTE = model_trans(input_2D_flip)
output_3D_flip_VTE[:, :, :, 0] *= -1
output_3D_flip[:, :, :, 0] *= -1
output_3D_flip_VTE[:, :, joints_left + joints_right, :] = output_3D_flip_VTE[:, :, joints_right + joints_left, :]
output_3D_flip[:, :, joints_left + joints_right, :] = output_3D_flip[:, :, joints_right + joints_left, :]
output_3D_VTE = (output_3D_non_flip_VTE + output_3D_flip_VTE) / 2
output_3D = (output_3D_non_flip + output_3D_flip) / 2
input_2D = input_2D_non_flip
return input_2D, output_3D, output_3D_VTE
if __name__ == '__main__':
opt.manualSeed = 1
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.train:
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y/%m/%d %H:%M:%S', \
filename=os.path.join(opt.checkpoint, 'train.log'), level=logging.INFO)
root_path = opt.root_path
dataset_path = root_path + 'data_3d_' + opt.dataset + '.npz'
dataset = Human36mDataset(dataset_path, opt)
actions = define_actions(opt.actions)
if opt.train:
train_data = Fusion(opt=opt, train=True, dataset=dataset, root_path=root_path)
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=opt.batch_size,
shuffle=True, num_workers=int(opt.workers), pin_memory=True)
test_data = Fusion(opt=opt, train=False,dataset=dataset, root_path =root_path)
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=opt.batch_size,
shuffle=False, num_workers=int(opt.workers), pin_memory=True)
opt.out_joints = dataset.skeleton().num_joints()
model = {}
model['trans'] = Model(opt).cuda()
model['refine']= refine(opt).cuda()
model_dict = model['trans'].state_dict()
if opt.reload:
model_path = sorted(glob.glob(os.path.join(opt.previous_dir, '*.pth')))
for path in model_path:
if os.path.split(path)[-1][0] == 'n':
no_refine_path = path
print(no_refine_path)
break
pre_dict = torch.load(no_refine_path)
for name, key in model_dict.items():
model_dict[name] = pre_dict[name]
model['trans'].load_state_dict(model_dict)
refine_dict = model['refine'].state_dict()
if opt.refine_reload:
model_path = sorted(glob.glob(os.path.join(opt.previous_dir, '*.pth')))
for path in model_path:
if os.path.split(path)[-1][0] == 'r':
refine_path = path
print(refine_path)
break
pre_dict_refine = torch.load(refine_path)
for name, key in refine_dict.items():
refine_dict[name] = pre_dict_refine[name]
model['refine'].load_state_dict(refine_dict)
all_param = []
lr = opt.lr
for i_model in model:
all_param += list(model[i_model].parameters())
optimizer_all = optim.Adam(all_param, lr=opt.lr, amsgrad=True)
for epoch in range(1, opt.nepoch):
if opt.train:
loss = train(opt, actions, train_dataloader, model, optimizer_all, epoch)
p1, p2 = val(opt, actions, test_dataloader, model)
if opt.train and not opt.refine:
save_model_epoch(opt.checkpoint, epoch, model['trans'])
if opt.train and p1 < opt.previous_best_threshold:
opt.previous_name = save_model(opt.previous_name, opt.checkpoint, epoch, p1, model['trans'], 'no_refine')
if opt.refine:
opt.previous_refine_name = save_model(opt.previous_refine_name, opt.checkpoint, epoch,
p1, model['refine'], 'refine')
opt.previous_best_threshold = p1
if not opt.train:
print('p1: %.2f, p2: %.2f' % (p1, p2))
break
else:
logging.info('epoch: %d, lr: %.7f, loss: %.4f, p1: %.2f, p2: %.2f' % (epoch, lr, loss, p1, p2))
print('e: %d, lr: %.7f, loss: %.4f, p1: %.2f, p2: %.2f' % (epoch, lr, loss, p1, p2))
if epoch % opt.large_decay_epoch == 0:
for param_group in optimizer_all.param_groups:
param_group['lr'] *= opt.lr_decay_large
lr *= opt.lr_decay_large
else:
for param_group in optimizer_all.param_groups:
param_group['lr'] *= opt.lr_decay
lr *= opt.lr_decay