We will provide a detailed preprocessing script for every dataset. Our aim is to make the code adaptable to various settings with minimal hard modifications. Keep an eye out for updates!
At this moment, dueing to the license of Scannet, we provide an example processed set of Scannet200 (1 scene) + Scannetpp (50 validation scenes) here: Scannet200, Scannetpp
Please, follow Scannet and Scannet++ license to use our preprocessed dataset.
We provide our Open3DIS results:
- Scannet200_OpenVocab_ISBNet-GSAM
- Scannet200_OpenVocab_GSAM
- Scannetpp_ClsAg_SAM
- ...
Running 3D backbone ISBNet will create isbnet_clsagnostic, dc_feat folders!
python tools/test.py <configs> <weights>
For Scannet200, we construct data tree directory as follow and consider only for validation set:
data
├── Scannet200
############## 2D root folder with default image sampling factor: 5 ##############
│ ├── Scannet200_2D_5interval
│ │ ├── val <- validation set
│ │ | ├── scene0011_00
│ │ | │ ├──color <- folder with image RGB
│ │ │ │ │ 00000.jpg
│ │ │ │ │ ...
│ │ | │ ├──depth <- folder with image depth
│ │ │ │ │ 00000.png
│ │ │ │ │ ...
│ │ | │ ├──pose <- folder with camera poses
│ │ │ │ │ 00000.txt
│ │ │ │ │ ...
│ │ | | intrinsic.txt (image intrinsic)
│ │ | ....
│ │ | intrinsic_depth.txt (depth intrinsic) <- Scannet intrinsic ~ depth img
│ │ ├── train
│ │ ├── test
############## 3D root folder with point cloud and annotation ##############
| ├── Scannet200_3D
│ │ ├── val <- validation set
│ │ │ ├── original_ply_files <- the .ply point cloud file from Scannet raw data.
│ │ │ │ scene0011_00.ply
│ │ │ │ ...
| │ │ ├── groundtruth <- normalized point cloud, color from PLY + ann (for 3D backbone)
| │ │ │ scene0011_00.pth
| │ │ │ ...
| │ │ ├── superpoints <- superpoints directory
| │ │ │ scene0011_00.pth
| │ │ │ ...
| │ │ ├── isbnet_clsagnostic_scannet200 <- class agnostic 3D proposals
| │ │ │ scene0011_00.pth
| │ │ │ ...
| │ │ ├── dc_feat_scannet200 <- 3D deep feature of 3D proposals network
| │ │ │ scene0011_00.pth
| │ │ │ ...
│ │ ├── train
│ │ ├── test
####################################################################################
1) Generating RGB-D images, camera poses, original PLY, superpoints and inst_nostuff files
-
Download the ScannetV2 dataset
-
Please refer to RGB-D images, camera poses and original PLY
-
Please refer to Superpoints and inst_nostuff
2) Generating class-agnostic 3D proposals and 3D deep features
- ISBNet
# Download the pretrained ISBNet on Scannet200 or V2 to acquire deep level feature
cd segmenter3d/ISBNet/
python3 tools/test.py configs/scannet200/isbnet_scannet200.yaml pretrains/scannet200/head_scannetv2_200_val.pth
- More 3DIS backbone will be updated...
For Scannetpp, we construct data tree directory as follow and consider only for validation set:
data
├── Scannetpp
############## 2D root folder with default image sampling factor: 5 ##############
│ ├── Scannetpp_2D_5interval
│ │ ├── val <- validation set
│ │ | ├── 0d2ee665be
│ │ | │ ├──color <- folder with image RGB
│ │ │ │ │ 00000.jpg
│ │ │ │ │ ...
│ │ | │ ├──depth <- folder with image depth
│ │ │ │ │ 00000.png
│ │ │ │ │ ...
│ │ | │ ├──pose <- folder with camera poses
│ │ │ │ │ 00000.txt
│ │ │ │ │ ...
│ │ | │ ├──intrinsic <- folder with intrinsic (In Scannet200, intrinsic same across all views)
│ │ │ │ │ 00000.txt
│ │ │ │ │ ...
│ │ | | intrinsic.txt (image intrinsic)
│ │ | ....
│ │ | intrinsic_depth.txt (depth intrinsic) <- Scannet intrinsic ~ depth img
│ │ ├── train
│ │ ├── test
############## 3D root folder with point cloud and annotation ##############
| ├── Scannetpp_3D
│ │ ├── val
│ │ │ ├── original_ply_files <- the .ply point cloud file from Scannet raw data.
│ │ │ │ 0d2ee665be.ply
│ │ │ │ ...
| │ │ ├── groundtruth <- point cloud, color from PLY + annotation
| │ │ │ 0d2ee665be.pth
| │ │ │ ...
| │ │ ├── superpoints <- superpoints directory
| │ │ │ 0d2ee665be.pth
| │ │ │ ...
| │ │ ├── isbnet_clsagnostic_scannet200 <- class agnostic 3D proposals
| │ │ │ 0d2ee665be.pth
| │ │ │ ...
| │ │ ├── dc_feat_scannetpp <- 3D deep feature of 3D proposals network
| │ │ │ 0d2ee665be.pth
| │ │ │ ...
│ │ ├── train
│ │ ├── test
####################################################################################
We special thank Ayca Takmaz for providing groundtruth of Replica dataset for evaluation. We also prepare the preprocessed data of Replica (including 8 scenes) at OneDrive. Download and extract it to data/Replica
.
data
├── Replica
############## 2D root folder with default image sampling factor: 5 ##############
│ ├── replica_2d
│ │ ├── office0
│ │ | ├── color
│ │ │ │ │ 0.jpg
│ │ │ │ │ ...
│ │ | ├── depth
│ │ │ │ │ 0.png
│ │ │ │ │ ...
│ │ | ├── pose
│ │ │ │ │ 0.txt
│ │ │ │ │ ...
│ │ ├── ...
│ ├── replica_3d
│ │ │ office0.pth
│ │ │ ...
│ ├── replica_spp_new
│ │ │ office0.pth
│ │ │ ...
│ ├── cls_agnostic_replica_scannet200
│ │ │ office0.pth
│ │ │ ...
│ ├── dc_feat_replica_scannet200
│ │ │ office0.pth
│ │ │ ...
For S3DIS, we use the un-aligned version at here.
We prepare the preprocessed data of S3DIS at OneDrive. Download and extract it to Dataset/s3dis
.
data
├── s3dis
############## 2D root folder with default image sampling factor: 5 ##############
│ ├── data_2d
│ │ ├── Area_4
│ │ | ├── office_1
│ │ | | ├── depth
│ │ │ │ │ │ x.png
│ │ | │ │ | ...
│ │ | | ├── pose
│ │ │ │ │ │ x.npz
│ │ | │ │ | ...
│ │ | | ├── rgb
│ │ │ │ │ │ x.png
│ │ | │ │ | ...
│ │ | ├── hallway_1
│ │ | | ...
│ │ ├── ...
│ ├── preprocess_open3dis
│ │ │ Area_X_office_1.pth
│ │ │ Area_X_hallway_1.pth
│ │ │ ...
│ ├── superpoints_open3dis
│ │ │ Area_X_office_1.pth
│ │ │ Area_X_hallway_1.pth
│ │ │ ...
│ ├── s3dis_areaX_cls_agnostic_pretrainfold4
│ │ │ Area_X_office_1.pth
│ │ │ Area_X_hallway_1.pth
│ │ │ ...
│ ├── dc_feat_s3dis_areaX
│ │ │ Area_X_office_1.pth
│ │ │ Area_X_hallway_1.pth
│ │ │ ...