-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathe2e_inference.py
129 lines (111 loc) · 4.69 KB
/
e2e_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import json
# from google.colab.patches import cv2_imshow
import math
import os
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
from mmocr.utils.ocr import MMOCR
from PIL import Image, ImageDraw, ImageFont
from tools.minimum_hull import minimum_bounding_rectangle
from tqdm import tqdm
from vietocr.tool.config import Cfg
from vietocr.tool.predictor import Predictor
def parse_args():
parser = argparse.ArgumentParser(description="Convert JSON annotations to ICDAR format")
parser.add_argument("-config", "--config", help="Testing Configuration")
parser.add_argument("-det_weights", "--det_weights", help="Detection Weight")
parser.add_argument("-rec_weights", "--rec_weights", help="Recognition Weight")
parser.add_argument("-input_images", "--input_images", help="Input images path")
parser.add_argument("-output_destination", "--output_destination", help="Output path")
args = parser.parse_args()
return args
def excecute(folder_path, image_folder_path):
print("Excecuting OCR")
os.mkdir(folder_path + "/" + "predicted")
for f in tqdm(os.listdir(image_folder_path)):
file_type = f.split(".")[1]
file_name = f.split(".")[0]
image = cv2.imread(os.path.join(image_folder_path, f))
ff = None
try:
ff = open(os.path.join(folder_path, "out_" + file_name + ".json"), "r")
except:
continue
all_data = json.load(ff)
boundary_results = all_data["boundary_result"]
results = []
ii = Image.fromarray(np.array(image))
draw = ImageDraw.Draw(ii)
for boundary_result in boundary_results:
np_image = np.array(image)
info = []
if boundary_result[-1] <= 0.25:
continue
points = []
for i in range(0, len(boundary_result) - 2, 2):
points.append(tuple([int(boundary_result[i]), int(boundary_result[i + 1])]))
points = np.array(points)
try:
four_points = minimum_bounding_rectangle(points)
except:
continue
four_points = np.array(four_points).astype(int)
rect = cv2.minAreaRect(four_points)
box = cv2.boxPoints(rect)
oriented_rec = np.int0(box)
x_tl, y_tl = min(oriented_rec[:, 0]), min(oriented_rec[:, 1])
x_br, y_br = max(oriented_rec[:, 0]), max(oriented_rec[:, 1])
if x_tl < 0 or y_tl < 0 or x_br >= np_image.shape[1] or y_br >= np_image.shape[0]:
np_image = cv2.copyMakeBorder(np_image, 500, 500, 500, 500, cv2.BORDER_CONSTANT, value=[0, 0, 0])
np_image = np_image[y_tl + 500 : y_br + 500, x_tl + 500 : x_br + 500]
else:
np_image = np_image[y_tl:y_br, x_tl:x_br]
try:
s = detector.predict(Image.fromarray(np_image))
except:
continue
font_path = os.path.join(cv2.__path__[0], "qt", "fonts", "DejaVuSans.ttf")
font = ImageFont.truetype(font_path, size=16)
draw.text((x_tl, y_tl), str(s), fill="red", font=font)
draw.rectangle([x_tl, y_tl, x_br, y_br], outline="blue")
clockwise = np.flip(oriented_rec, axis=0)
for p in clockwise:
info.append(str(p[0]))
info.append(str(p[1]))
info.append(str(s))
results.append(",".join(info))
# ii.save(folder_path + '/drive/' + file_name + '_txt_.jpg')
file_submit_name = os.path.join(folder_path + "/" + "predicted", file_name + ".txt")
with open(file_submit_name, "w") as file_submit:
for line_string in results:
file_submit.write(line_string)
file_submit.write("\n")
if __name__ == "__main__":
args = parse_args()
hack = 1000 ### not hack == 1
while hack >= 1:
config = args.config
detw = args.det_weights
recw = args.rec_weights
inp = args.input_images
out = args.output_destination
## Detection
# Load models into memory
ocr = MMOCR(det="MaskRCNN_IC15", det_config=config, recog=None, det_ckpt=detw)
print("Completed Loading Det Model")
# Inference
results = ocr.readtext(inp, output=out, export=out)
print("Completed Testing Detection")
## Recognition
config = Cfg.load_config_from_name("vgg_transformer")
config["weights"] = recw
config["cnn"]["pretrained"] = False
config["device"] = "cuda:0"
detector = Predictor(config)
print("Completed Loading Rec Model")
# excecute(out,inp)
print("Finised")
hack -= 1