-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathue_estimator_ddu.py
246 lines (179 loc) · 7.77 KB
/
ue_estimator_ddu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import numpy as np
from tqdm import tqdm
from sklearn.decomposition import PCA
from utils.utils_heads import (
ElectraClassificationHeadIdentityPooler,
BertClassificationHeadIdentityPooler,
ElectraNERHeadIdentityPooler,
)
from utils.utils_inference import (
is_custom_head,
unpad_features,
pad_scores
)
import logging
import time
log = logging.getLogger()
DOUBLE_INFO = torch.finfo(torch.double)
JITTERS = [0, DOUBLE_INFO.tiny] + [10 ** exp for exp in range(-10, 0, 1)]
def centered_cov(x):
return x.T @ x / (len(x) - 1)
def compute_density(log_logits, label_probs):
return torch.sum((torch.exp(log_logits / 768) * label_probs), dim=1)
def get_gmm_log_probs(gaussians_model, embeddings):
return gaussians_model.log_prob(embeddings[:, None, :])
def gmm_fit(embeddings, labels):
num_classes = len(set(labels))
with torch.no_grad():
centroids = torch.stack(
[torch.mean(embeddings[labels == c], dim=0) for c in range(num_classes)]
)
cov_matrix = torch.stack(
[
centered_cov(embeddings[labels == c] - centroids[c])
for c in range(num_classes)
]
)
with torch.no_grad():
for jitter_eps in JITTERS:
try:
jitter = jitter_eps * torch.eye(
cov_matrix.shape[1], device=cov_matrix.device,
).unsqueeze(0)
gmm = torch.distributions.MultivariateNormal(
loc=centroids, covariance_matrix=(cov_matrix + jitter),
)
break
except RuntimeError as e:
if "cholesky" in str(e):
continue
except ValueError as e:
if "The parameter covariance_matrix has invalid values" in str(e):
continue
return gmm, jitter_eps
class UeEstimatorDDU:
def __init__(self, cls, ue_args, config, train_dataset):
self.cls = cls
self.ue_args = ue_args
self.config = config
self.train_dataset = train_dataset
def __call__(self, X, y):
return self._predict_with_fitted_gmm(X, y)
def fit_ue(self, X, y=None, X_test=None):
cls = self.cls
model = self.cls._auto_model
log.info("****************Start fitting GMM**************")
if y is None:
y = self._exctract_labels(X)
self._replace_model_head()
X_features = self._exctract_features(X)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
X_features = torch.Tensor(X_features).to(self.device)
self.gmm, jitter = gmm_fit(X_features, y)
self.label_probs = torch.Tensor(np.bincount(y) / len(y)).to(self.device)
assert torch.all(self.label_probs > 0), "All labels must present in the train sample!"
log.info("**************Done.**********************")
def _replace_model_head(self):
log.info("Change classifier to Identity Pooler")
cls = self.cls
model = self.cls._auto_model
if is_custom_head(model):
model.classifier = ElectraClassificationHeadIdentityPooler(model.classifier)
else:
model.classifier = BertClassificationHeadIdentityPooler(model.classifier)
def _exctract_labels(self, X):
return np.asarray([example["label"] for example in X])
def _exctract_features(self, X):
cls = self.cls
model = self.cls._auto_model
try:
X = X.remove_columns("label")
except:
X.dataset = X.dataset.remove_columns("label")
X_features = cls.predict(X, apply_softmax=False, return_preds=False)[0]
return X_features
def _predict_with_fitted_gmm(self, X, y):
cls = self.cls
model = self.cls._auto_model
log.info("****************Compute DDU with fitted GMM**************")
start = time.time()
if y is None:
y = self._exctract_labels(X)
X_features = self._exctract_features(X)
X_features = torch.Tensor(X_features).to(self.device)
log_probs = get_gmm_log_probs(self.gmm, X_features)
scores = compute_density(log_probs, self.label_probs)
end = time.time()
eval_results = {}
eval_results["ddu_scores"] = scores.cpu().detach().numpy().tolist()
sum_inf_time = end - start
eval_results["ue_time"] = sum_inf_time
log.info(f"UE time: {sum_inf_time}")
log.info("**************Done.**********************")
return eval_results
class UeEstimatorDDUNer:
def __init__(self, cls, ue_args, config, train_dataset):
self.cls = cls
self.ue_args = ue_args
self.config = config
self.train_dataset = train_dataset
def __call__(self, X, y):
return self._predict_with_fitted_gmm(X, y)
def fit_ue(self, X, y=None, X_test=None):
cls = self.cls
model = self.cls._auto_model
log.info("****************Start fitting GMM**************")
if y is None:
y, y_shape = self._exctract_labels(X)
self._replace_model_head()
X_features = self._exctract_features(X)
X_features, y = unpad_features(X_features, y)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
X_features = torch.Tensor(X_features).to(self.device)
self.gmm, jitter = gmm_fit(X_features, y)
self.label_probs = torch.Tensor(np.bincount(y) / len(y)).to(self.device)
assert torch.all(self.label_probs > 0), "All labels must present in the train sample!"
log.info("**************Done.**********************")
def _replace_model_head(self):
log.info("Change classifier to Identity Pooler")
cls = self.cls
model = self.cls._auto_model
if is_custom_head(model):
model.classifier = ElectraNERHeadIdentityPooler(model.classifier)
else:
model.classifier = BertClassificationHeadIdentityPooler(model.classifier)
def _exctract_labels(self, X):
y = np.asarray([example["labels"] for example in X])
y_shape = y.shape
return y.reshape(-1), y_shape
def _exctract_features(self, X):
cls = self.cls
model = self.cls._auto_model
try:
X = X.remove_columns("labels")
except:
X.dataset = X.dataset.remove_columns("labels")
X_features = cls.predict(X, apply_softmax=False, return_preds=False)[0]
X_features = X_features.reshape(-1, X_features.shape[-1])
return X_features
def _predict_with_fitted_gmm(self, X, y):
cls = self.cls
model = self.cls._auto_model
log.info("****************Compute DDU with fitted GMM**************")
start = time.time()
y_pad, y_shape = self._exctract_labels(X)
X_features = self._exctract_features(X)
X_features, y = unpad_features(X_features, y_pad)
X_features = torch.Tensor(X_features).to(self.device)
log_probs = get_gmm_log_probs(self.gmm, X_features)
scores = compute_density(log_probs, self.label_probs)
scores = pad_scores(scores.cpu().detach().numpy(), np.asarray(y_pad).reshape(y_shape), y_pad)
end = time.time()
eval_results = {}
eval_results["ddu_scores"] = scores.tolist()
sum_inf_time = end - start
eval_results["ue_time"] = sum_inf_time
log.info(f"UE time: {sum_inf_time}")
log.info("**************Done.**********************")
return eval_results