-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathue_estimator_l_nuq.py
190 lines (148 loc) · 6.55 KB
/
ue_estimator_l_nuq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import numpy as np
from utils.utils_heads import (
ElectraClassificationHeadIdentityPooler,
BertClassificationHeadIdentityPooler,
ElectraNERHeadIdentityPooler,
)
from utils.utils_inference import (
is_custom_head,
unpad_features,
pad_scores
)
import time
import logging
import sys
import os
import random
import ray
log = logging.getLogger()
try:
from nuq import NuqClassifier
except:
log.info('There is no NUQ module!')
def seed_everything(seed: int):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
class UeEstimatorLNUQ:
def __init__(self, cls, ue_args, config, train_dataset, calibration_dataset):
self.cls = cls
self.ue_args = ue_args
self.config = config
self.train_dataset = train_dataset
self.calibration_dataset = calibration_dataset
def __call__(self, X, y=None):
return self._predict_with_fitted_nuq(X, y)
def fit_ue(self, X, y=None, X_test=None):
cls = self.cls
model = self.cls._auto_model
seed_everything(self.config.training.seed)
if y is None:
y = self._exctract_labels(X)
self._replace_model_head()
X_features, X_hidden_states = self._exctract_features(X)
self.nuq_classifier = self._fit_nuq(X_features, y)
self.hidden_nuq_classifiers = []
for i, X_hidden_state in enumerate(X_hidden_states):
self.hidden_nuq_classifiers.append(self._fit_nuq(X_hidden_state, y, i))
def _predict_with_fitted_nuq(self, X, y):
cls = self.cls
model = self.cls._auto_model
seed_everything(self.config.training.seed)
log.info("****************Compute NUQ uncertainty with fitted NuqClassifier**************")
start = time.time()
if y is None:
y = self._exctract_labels(X)
X_features, X_hidden_states = self._exctract_features(X)
eval_results = {}
nuq_probs, log_epistemic_uncs = self.nuq_classifier.predict_proba(np.asarray(X_features), return_uncertainty="epistemic")
_, log_aleatoric_uncs = self.nuq_classifier.predict_proba(np.asarray(X_features), return_uncertainty="aleatoric")
end = time.time()
sum_inf_time = (end - start)
for i, X_hidden_state in enumerate(X_hidden_states):
start = time.time()
nuq_classifier_i = self.hidden_nuq_classifiers[i]
if nuq_classifier_i is None:
continue
_, log_epistemic_uncs_l = nuq_classifier_i.predict_proba(np.asarray(X_hidden_state),
return_uncertainty="epistemic")
_, log_aleatoric_uncs_l = nuq_classifier_i.predict_proba(np.asarray(X_hidden_state),
return_uncertainty="aleatoric")
log_epistemic_uncs += log_epistemic_uncs_l
log_aleatoric_uncs += log_aleatoric_uncs_l
end = time.time()
sum_inf_time += (end - start)
eval_results["aleatoric"] = log_epistemic_uncs.tolist()
eval_results["epistemic"] = log_aleatoric_uncs.tolist()
eval_results["total"] = (log_epistemic_uncs+log_aleatoric_uncs).tolist()
eval_results["nuq_probabilities"] = nuq_probs.todense().tolist()
eval_results["ue_time"] = sum_inf_time
log.info(f"UE time: {sum_inf_time}")
log.info("**************Done.**********************")
return eval_results
def _fit_nuq(self, X, y, i=None):
log.info("****************Start fitting NuqClassifier**************")
tune_bandwidth = self.ue_args.nuq.tune_bandwidth
tune_bandwidth = None if tune_bandwidth=='None' else tune_bandwidth
try:
nuq_classifier = NuqClassifier(
tune_bandwidth=tune_bandwidth,
n_neighbors=self.ue_args.nuq.n_neighbors,
log_pN=self.ue_args.nuq.log_pN,
)
nuq_classifier.fit(X=np.asarray(X),
y=np.asarray(y))
except:
tune_bandwidth = None
nuq_classifier = NuqClassifier(
tune_bandwidth=tune_bandwidth,
n_neighbors=self.ue_args.nuq.n_neighbors,
log_pN=self.ue_args.nuq.log_pN,
)
nuq_classifier.fit(X=np.asarray(X),
y=np.asarray(y))
if tune_bandwidth is None:
try:
_, squared_dists = ray.get(
self.nuq_classifier.index_.knn_query.remote(self.nuq_classifier.X_ref_, return_dist=True)
)
dists = np.sqrt(squared_dists)[:, 1:]
min_dists = dists[:, 0]
left, right = min_dists[min_dists != 0].min(), dists.max()
bandwidth = np.sqrt(left*right)
log.info(f'NUQ bandwidth {bandwidth}')
nuq_classifier.bandwidth_ref_ = ray.put(np.array(bandwidth))
except Exception as e:
log.info(f"Again error while fitting L-NUQ {i}, skip")
log.info(f"Error: {e}")
return None
log.info("**************Done.**********************")
return nuq_classifier
def _replace_model_head(self):
log.info("Change classifier to Identity Pooler")
cls = self.cls
model = self.cls._auto_model
if is_custom_head(model):
model.classifier = ElectraClassificationHeadIdentityPooler(model.classifier)
else:
model.classifier = BertClassificationHeadIdentityPooler(model.classifier)
def _exctract_labels(self, X):
return np.asarray([example["label"] for example in X])
def _exctract_features(self, X):
cls = self.cls
model = self.cls._auto_model
try:
X = X.remove_columns("label")
except:
X.dataset = X.dataset.remove_columns("label")
features = self.cls.predict(
X, apply_softmax=False, return_preds=False
)
X_hidden_states = [np.tanh(state) for state in features[1][1]]
X_features = features[0]
return X_features, X_hidden_states