-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
252 lines (206 loc) · 9.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import torch
import copy
from tqdm import tqdm
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR, StepLR
from utils import *
from dataset import *
from models import *
import numpy as np
import open3d as o3d
from losses import *
from matplotlib import pyplot as plt
from main_util import train_one_epoch, plot_loss_epoch, eval_one_epoch
from clip_util import test_one_epoch_seq, train_one_epoch_seq, eval_one_epoch_seq
from utils.vis_util import *
class IOStream:
def __init__(self, path):
self.f = open(path, 'a')
def cprint(self, text):
print(text)
self.f.write(text + '\n')
self.f.flush()
def close(self):
self.f.close()
def _init_(args):
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/' + args.exp_name):
os.makedirs('checkpoints/' + args.exp_name)
if not os.path.exists('checkpoints/' + args.exp_name + '/' + 'models'):
os.makedirs('checkpoints/' + args.exp_name + '/' + 'models')
if not os.path.exists('checkpoints/' + args.exp_name + '/' + 'loss_train'):
os.makedirs('checkpoints/' + args.exp_name + '/' + 'loss_train')
os.system('cp main.py checkpoints' + '/' + args.exp_name + '/' + 'main.py.backup')
os.system('cp configs.yaml checkpoints' + '/' + args.exp_name + 'configs.yaml.backup')
def test(args, net, test_loader, textio):
if args.dataset == 'vodClipDataset':
sf_metric, seg_metric, pose_metric, gt_trans, pre_trans = test_one_epoch_seq(args, net, test_loader, textio)
else:
sf_metric, seg_metric, pose_metric, gt_trans, pre_trans = eval_one_epoch(args, net, test_loader, textio)
## print scene flow evaluation results
for metric in sf_metric:
textio.cprint('###The mean {}: {}###'.format(metric, sf_metric[metric]))
if args.model in ['cmflow_t', 'cmflow', 'raflow']:
## print motion seg evaluation results
for metric in seg_metric:
textio.cprint('###The mean {}: {}###'.format(metric, seg_metric[metric]))
## print ego_motion evaluation results
for metric in pose_metric:
textio.cprint('###The mean {}: {}###'.format(metric, pose_metric[metric]))
textio.cprint('Max memory alocation: {}MB'.format(torch.cuda.max_memory_allocated(device=0)/1e6))
print('FINISH')
def test_vis(args, net, test_loader, textio):
if not args.model in ['gl_wo','icp']:
net.eval()
args.vis_path_flow='checkpoints/'+args.exp_name+"/test_vis_flow/"
args.vis_path_seg='checkpoints/'+args.exp_name+"/test_vis_seg/"
if not os.path.exists(args.vis_path_flow):
os.makedirs(args.vis_path_flow)
if not os.path.exists(args.vis_path_seg):
os.makedirs(args.vis_path_seg)
if args.dataset == 'vodClipDataset':
sf_metric, seg_metric, pose_metric, gt_trans, pre_trans = test_one_epoch_seq(args, net, test_loader, textio)
else:
sf_metric, seg_metric, pose_metric, gt_trans, pre_trans = eval_one_epoch(args, net, test_loader, textio)
## print scene flow evaluation results
for metric in sf_metric:
textio.cprint('###The mean {}: {}###'.format(metric, sf_metric[metric]))
if args.model in ['cmflow_t', 'cmflow', 'raflow']:
## print motion seg evaluation results
for metric in seg_metric:
textio.cprint('###The mean {}: {}###'.format(metric, seg_metric[metric]))
## print ego_motion evaluation results
for metric in pose_metric:
textio.cprint('###The mean {}: {}###'.format(metric, pose_metric[metric]))
textio.cprint('Max memory alocation: {}MB'.format(torch.cuda.max_memory_allocated(device=0)/1e6))
print('FINISH')
def train(args, net, train_loader, val_loader, textio):
opt = optim.Adam(net.parameters(), lr=args.lr, weight_decay=1e-4)
scheduler = StepLR(opt, args.decay_epochs, gamma = args.decay_rate)
best_val_res = np.inf
train_loss_ls = np.zeros((args.epochs))
val_score_ls = np.zeros(args.epochs)
train_items_iter = {
'Loss': [],'nnLoss': [],'smoothnessLoss': [],'veloLoss': [],
'cycleLoss': [],'curvatureLoss':[],'chamferLoss': [],'L2Loss': [], 'glLoss': [],
'egoLoss':[], 'maskLoss': [], 'superviseLoss': [], 'opticalLoss': [], 'L1Loss': [],'velocity_regression_loss':[]
}
for epoch in range(args.epochs):
textio.cprint('====epoch: %d, learning rate: %f===='%(epoch, opt.param_groups[0]['lr']))
textio.cprint('==starting training on the training set==')
if args.dataset == 'vodClipDataset':
total_loss, loss_items = train_one_epoch_seq(args, net, train_loader, opt)
else:
total_loss, loss_items = train_one_epoch(args, net, train_loader, opt)
train_loss_ls[epoch] = total_loss
for it in loss_items:
train_items_iter[it].extend([loss_items[it]])
textio.cprint('mean train loss: %f'%total_loss)
textio.cprint('==starting evaluation on the validation set==')
if args.dataset == 'vodClipDataset':
sf_metric,_,_,_,_ = eval_one_epoch_seq(args, net, val_loader, textio)
else:
sf_metric, _, _, _, _ = eval_one_epoch(args, net, val_loader, textio)
if args.model == 'pretrain_v':
eval_score = sf_metric['vel_epe']
else:
eval_score = sf_metric['rne']
val_score_ls[epoch] = eval_score
textio.cprint('mean RNE score: %f'%eval_score)
if best_val_res >= eval_score:
best_val_res = eval_score
textio.cprint('best val score till now: %f'%best_val_res)
if torch.cuda.device_count() > 1:
torch.save(net.module.state_dict(), 'checkpoints/%s/models/model.best.t7' % args.exp_name)
else:
torch.save(net.state_dict(), 'checkpoints/%s/models/model.best.t7' % args.exp_name)
scheduler.step()
plot_loss_epoch(train_items_iter, args, epoch)
textio.cprint('====best RNE score after %d epochs: %f===='%(args.epochs, best_val_res))
plt.clf()
plt.plot(train_loss_ls[0:int(args.epochs)], 'b')
plt.legend(['train_loss'])
plt.xlabel('epoch')
plt.ylabel('loss')
plt.savefig('checkpoints/%s/loss_train/train_loss.png' % args.exp_name,dpi=500)
plt.clf()
plt.plot(val_score_ls[0:int(args.epochs)], 'r')
plt.legend(['val_score'])
plt.xlabel('epoch')
plt.ylabel('score')
plt.savefig('checkpoints/%s/val_score.png' % args.exp_name,dpi=500)
return best_val_res
def main(io_args):
args = parse_args_from_yaml("configs.yaml")
args.eval = io_args.eval
args.vis = io_args.vis
args.dataset_path = io_args.dataset_path
args.exp_name = io_args.exp_name
args.model = io_args.model
args.save_res = io_args.save_res
args.dataset = io_args.dataset
# CUDA settings
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_device
# deterministic results
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.manual_seed(args.seed)
# init checkpoint records
_init_(args)
textio = IOStream('checkpoints/' + args.exp_name + '/run.log')
textio.cprint(str(args))
# init dataset and dataloader
if args.eval:
test_set = dataset_dict[args.dataset](args=args, root = args.dataset_path, partition=args.eval_split,textio=textio)
test_loader = DataLoader(test_set,num_workers=args.num_workers, batch_size=1, shuffle=False, drop_last=False)
else:
train_set = dataset_dict[args.dataset](args=args, root = args.dataset_path, partition=args.train_set,textio=textio)
val_set = dataset_dict[args.dataset](args=args, root = args.dataset_path, partition='val', textio=textio)
train_loader = DataLoader(train_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, drop_last=True)
val_loader = DataLoader(val_set, num_workers=args.num_workers, batch_size=args.val_batch_size, shuffle=False, drop_last=False)
# update dataset extrisic and intrinsic to args
if not args.eval:
args.camera_projection_matrix = train_set.camera_projection_matrix
args.t_camera_radar = train_set.t_camera_radar
args.radar_res = train_set.res
else:
args.camera_projection_matrix = test_set.camera_projection_matrix
args.t_camera_radar = test_set.t_camera_radar
args.radar_res = test_set.res
if args.eval:
args.clips_info = test_set.clips_info
# init the network (load or from scratch)
net = init_model(args)
if args.eval:
best_val_res = None
if args.vis:
textio.cprint('==Enable Visulization==')
test_vis(args, net, test_loader,textio)
else:
test(args, net, test_loader,textio)
else:
best_val_res = train(args, net, train_loader, val_loader,textio)
textio.cprint('Max memory alocation: {}MB'.format(torch.cuda.max_memory_allocated(device=0)/1e6))
print('FINISH')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Radar Scene flow running')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--vis', action = 'store_true')
parser.add_argument('--save_res', action='store_true')
parser.add_argument('--dataset_path', type= str, default = '/mnt/12T/fangqiang/preprocess_res/flow_smp/')
parser.add_argument('--exp_name', type = str, default = 'cmflow_cvpr')
parser.add_argument('--model', type = str, default = 'cmflow')
parser.add_argument('--dataset', type = str, default = 'vodDataset')
args = parser.parse_args()
main(args)