-
Notifications
You must be signed in to change notification settings - Fork 20
/
losses.py
531 lines (454 loc) · 23.3 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import random
import math
def MultiChannelSoftBinaryCrossEntropy(input, target, reduction='mean'):
'''
input: N x 38 x H x W --> 19N x 2 x H x W
target: N x 19 x H x W --> 19N x 1 x H x W
'''
input = input.view(-1, 2, input.size(2), input.size(3))
target = target.view(-1, 1, input.size(2), input.size(3))
logsoftmax = nn.LogSoftmax(dim=1)
if reduction == 'mean':
return torch.mean(torch.sum(-target * logsoftmax(input), dim=1))
else:
return torch.sum(torch.sum(-target * logsoftmax(input), dim=1))
class EdgeAwareLoss():
def __init__(self, nc=2, loss_type="L1", reduction='mean'):
assert loss_type in ['L1', 'BCE'], "Undefined loss type: {}".format(loss_type)
self.nc = nc
self.loss_type = loss_type
self.kernelx = Variable(torch.Tensor([[1,0,-1],[2,0,-2],[1,0,-1]]).cuda())
self.kernelx = self.kernelx.repeat(nc,1,1,1)
self.kernely = Variable(torch.Tensor([[1,2,1],[0,0,0],[-1,-2,-1]]).cuda())
self.kernely = self.kernely.repeat(nc,1,1,1)
self.bias = Variable(torch.zeros(nc).cuda())
self.reduction = reduction
if loss_type == 'L1':
self.loss = nn.SmoothL1Loss(reduction=reduction)
elif loss_type == 'BCE':
self.loss = self.bce2d
def bce2d(self, input, target):
assert not target.requires_grad
beta = 1 - torch.mean(target)
weights = 1 - beta + (2 * beta - 1) * target
loss = nn.functional.binary_cross_entropy(input, target, weights, reduction=self.reduction)
return loss
def get_edge(self, var):
assert var.size(1) == self.nc, \
"input size at dim 1 should be consistent with nc, {} vs {}".format(var.size(1), self.nc)
outputx = nn.functional.conv2d(var, self.kernelx, bias=self.bias, padding=1, groups=self.nc)
outputy = nn.functional.conv2d(var, self.kernely, bias=self.bias, padding=1, groups=self.nc)
eps=1e-05
return torch.sqrt(outputx.pow(2) + outputy.pow(2) + eps).mean(dim=1, keepdim=True)
def __call__(self, input, target):
size = target.shape[2:4]
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True)
target_edge = self.get_edge(target)
if self.loss_type == 'L1':
return self.loss(self.get_edge(input), target_edge)
elif self.loss_type == 'BCE':
raise NotImplemented
#target_edge = torch.sign(target_edge - 0.1)
#pred = self.get_edge(nn.functional.sigmoid(input))
#return self.loss(pred, target_edge)
def KLD(mean, logvar):
return -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp())
class DiscreteLoss():
def __init__(self, nbins, fmax):
self.loss = nn.CrossEntropyLoss()
assert nbins % 2 == 1, "nbins should be odd"
self.nbins = nbins
self.fmax = fmax
self.step = 2 * fmax / float(nbins)
def tobin(self, target):
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3)
quantized_target = torch.floor((target + self.fmax) / self.step)
return quantized_target.type(torch.cuda.LongTensor)
def __call__(self, input, target):
size = target.shape[2:4]
if input.shape[2] != size[0] or input.shape[3] != size[1]:
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True)
target = self.tobin(target)
assert input.size(1) == self.nbins * 2
return self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.loss(input[:,self.nbins:,...], target[:,1,...])
class MultiDiscreteLoss():
def __init__(self, nbins=19, fmax=47.5, reduction='mean', xy_weight=(1., 1.), quantize_strategy='linear'):
self.loss = nn.CrossEntropyLoss(reduction=reduction)
assert nbins % 2 == 1, "nbins should be odd"
self.nbins = nbins
self.fmax = fmax
self.step = 2 * fmax / float(nbins)
self.x_weight, self.y_weight = xy_weight
self.quantize_strategy = quantize_strategy
def tobin(self, target):
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3)
if self.quantize_strategy == "linear":
quantized_target = torch.floor((target + self.fmax) / self.step)
elif self.quantize_strategy == "quadratic":
ind = target.data > 0
quantized_target = target.clone()
quantized_target[ind] = torch.floor(self.nbins * torch.sqrt(target[ind] / (4 * self.fmax)) + self.nbins / 2.)
quantized_target[~ind] = torch.floor(-self.nbins * torch.sqrt(-target[~ind] / (4 * self.fmax)) + self.nbins / 2.)
return quantized_target.type(torch.cuda.LongTensor)
def __call__(self, input, target):
size = target.shape[2:4]
target = self.tobin(target)
if isinstance(input, list):
input = [nn.functional.interpolate(ip, size=size, mode="bilinear", align_corners=True) for ip in input]
return sum([self.x_weight * self.loss(input[k][:,:self.nbins,...], target[:,0,...]) + self.y_weight * self.loss(input[k][:,self.nbins:,...], target[:,1,...]) for k in range(len(input))]) / float(len(input))
else:
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True)
return self.x_weight * self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.y_weight * self.loss(input[:,self.nbins:,...], target[:,1,...])
class MultiL1Loss():
def __init__(self, reduction='mean'):
self.loss = nn.SmoothL1Loss(reduction=reduction)
def __call__(self, input, target):
size = target.shape[2:4]
if isinstance(input, list):
input = [nn.functional.interpolate(ip, size=size, mode="bilinear", align_corners=True) for ip in input]
return sum([self.loss(input[k], target) for k in range(len(input))]) / float(len(input))
else:
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True)
return self.loss(input, target)
class MultiMSELoss():
def __init__(self):
self.loss = nn.MSELoss()
def __call__(self, predicts, targets):
loss = 0
for predict, target in zip(predicts, targets):
loss += self.loss(predict, target)
return loss
class JointDiscreteLoss():
def __init__(self, nbins=19, fmax=47.5, reduction='mean', quantize_strategy='linear'):
self.loss = nn.CrossEntropyLoss(reduction=reduction)
assert nbins % 2 == 1, "nbins should be odd"
self.nbins = nbins
self.fmax = fmax
self.step = 2 * fmax / float(nbins)
self.quantize_strategy = quantize_strategy
def tobin(self, target):
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3)
if self.quantize_strategy == "linear":
quantized_target = torch.floor((target + self.fmax) / self.step)
elif self.quantize_strategy == "quadratic":
ind = target.data > 0
quantized_target = target.clone()
quantized_target[ind] = torch.floor(self.nbins * torch.sqrt(target[ind] / (4 * self.fmax)) + self.nbins / 2.)
quantized_target[~ind] = torch.floor(-self.nbins * torch.sqrt(-target[~ind] / (4 * self.fmax)) + self.nbins / 2.)
else:
raise Exception("No such quantize strategy: {}".format(self.quantize_strategy))
joint_target = quantized_target[:,0,:,:] * self.nbins + quantized_target[:,1,:,:]
return joint_target.type(torch.cuda.LongTensor)
def __call__(self, input, target):
target = self.tobin(target)
assert input.size(1) == self.nbins ** 2
return self.loss(input, target)
class PolarDiscreteLoss():
def __init__(self, abins=30, rbins=20, fmax=50., reduction='mean', ar_weight=(1., 1.), quantize_strategy='linear'):
self.loss = nn.CrossEntropyLoss(reduction=reduction)
self.fmax = fmax
self.rbins = rbins
self.abins = abins
self.a_weight, self.r_weight = ar_weight
self.quantize_strategy = quantize_strategy
def tobin(self, target):
indxneg = target.data[:,0,:,:] < 0
eps = torch.zeros(target.data[:,0,:,:].size()).cuda()
epsind = target.data[:,0,:,:] == 0
eps[epsind] += 1e-5
angle = torch.atan(target.data[:,1,:,:] / (target.data[:,0,:,:] + eps))
angle[indxneg] += np.pi
angle += np.pi / 2 # 0 to 2pi
angle = torch.clamp(angle, 0, 2 * np.pi - 1e-3)
radius = torch.sqrt(target.data[:,0,:,:] ** 2 + target.data[:,1,:,:] ** 2)
radius = torch.clamp(radius, 0, self.fmax - 1e-3)
quantized_angle = torch.floor(self.abins * angle / (2 * np.pi))
if self.quantize_strategy == 'linear':
quantized_radius = torch.floor(self.rbins * radius / self.fmax)
elif self.quantize_strategy == 'quadratic':
quantized_radius = torch.floor(self.rbins * torch.sqrt(radius / self.fmax))
else:
raise Exception("No such quantize strategy: {}".format(self.quantize_strategy))
quantized_target = torch.autograd.Variable(torch.cat([torch.unsqueeze(quantized_angle, 1), torch.unsqueeze(quantized_radius, 1)], dim=1))
return quantized_target.type(torch.cuda.LongTensor)
def __call__(self, input, target):
target = self.tobin(target)
assert (target >= 0).all() and (target[:,0,:,:] < self.abins).all() and (target[:,1,:,:] < self.rbins).all()
return self.a_weight * self.loss(input[:,:self.abins,...], target[:,0,...]) + self.r_weight * self.loss(input[:,self.abins:,...], target[:,1,...])
class WeightedDiscreteLoss():
def __init__(self, nbins=19, fmax=47.5, reduction='mean'):
self.loss = CrossEntropy2d(reduction=reduction)
assert nbins % 2 == 1, "nbins should be odd"
self.nbins = nbins
self.fmax = fmax
self.step = 2 * fmax / float(nbins)
self.weight = np.ones((nbins), dtype=np.float32)
self.weight[int(self.fmax / self.step)] = 0.01
self.weight = torch.from_numpy(self.weight).cuda()
def tobin(self, target):
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3)
return torch.floor((target + self.fmax) / self.step).type(torch.cuda.LongTensor)
def __call__(self, input, target):
target = self.tobin(target)
assert (target >= 0).all() and (target < self.nbins).all()
return self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.loss(input[:,self.nbins:,...], target[:,1,...], self.weight)
class CrossEntropy2d(nn.Module):
def __init__(self, reduction='mean', ignore_label=-1):
super(CrossEntropy2d, self).__init__()
self.ignore_label = ignore_label
self.reduction = reduction
def forward(self, predict, target, weight=None):
"""
Args:
predict:(n, c, h, w)
target:(n, h, w)
weight (Tensor, optional): a manual rescaling weight given to each class.
If given, has to be a Tensor of size "nclasses"
"""
assert not target.requires_grad
assert predict.dim() == 4
assert target.dim() == 3
assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0))
assert predict.size(2) == target.size(1), "{0} vs {1} ".format(predict.size(2), target.size(1))
assert predict.size(3) == target.size(2), "{0} vs {1} ".format(predict.size(3), target.size(3))
n, c, h, w = predict.size()
target_mask = (target >= 0) * (target != self.ignore_label)
target = target[target_mask]
predict = predict.transpose(1, 2).transpose(2, 3).contiguous()
predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c)
loss = F.cross_entropy(predict, target, weight=weight, reduction=self.reduction)
return loss
#class CrossPixelSimilarityLoss():
# '''
# Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py
# '''
# def __init__(self, sigma=0.0036, sampling_size=512):
# self.sigma = sigma
# self.sampling_size = sampling_size
# self.epsilon = 1.0e-15
# self.embed_norm = True # loss does not decrease no matter it is true or false.
#
# def __call__(self, embeddings, flows):
# '''
# embedding: Variable Nx256xHxW (not hyper-column)
# flows: Variable Nx2xHxW
# '''
# assert flows.size(1) == 2
#
# # flow normalization
# positive_mask = (flows > 0)
# flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.)
# flows[positive_mask] = -flows[positive_mask]
#
# # embedding normalization
# if self.embed_norm:
# embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True)
#
# # Spatially random sampling (512 samples)
# flows_flatten = flows.view(flows.shape[0], 2, -1)
# random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda())
# flows_sample = torch.index_select(flows_flatten, 2, random_locations)
#
# # K_f
# k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) -
# torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3,
# keepdim=False) ** 2
# exp_k_f = torch.exp(-k_f / 2. / self.sigma)
#
#
# # mask
# eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda())
# mask = torch.ones_like(exp_k_f) - eye
#
# # S_f
# masked_exp_k_f = torch.mul(mask, exp_k_f) + eye
# s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True)
#
# # K_theta
# embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1)
# embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations)
# embeddings_sample_norm = torch.norm(embeddings_sample, p=2, dim=1, keepdim=True)
# k_theta = 0.25 * (torch.matmul(embeddings_sample.permute(0, 2, 1), embeddings_sample)) / (self.epsilon + torch.matmul(embeddings_sample_norm.permute(0, 2, 1), embeddings_sample_norm))
# exp_k_theta = torch.exp(k_theta)
#
# # S_theta
# masked_exp_k_theta = torch.mul(mask, exp_k_theta) + math.exp(-0.75) * eye
# s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True)
#
# # loss
# loss = -torch.mean(torch.mul(s_f, torch.log(s_theta)))
#
# return loss
class CrossPixelSimilarityLoss():
'''
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py
'''
def __init__(self, sigma=0.01, sampling_size=512):
self.sigma = sigma
self.sampling_size = sampling_size
self.epsilon = 1.0e-15
self.embed_norm = True # loss does not decrease no matter it is true or false.
def __call__(self, embeddings, flows):
'''
embedding: Variable Nx256xHxW (not hyper-column)
flows: Variable Nx2xHxW
'''
assert flows.size(1) == 2
# flow normalization
positive_mask = (flows > 0)
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.)
flows[positive_mask] = -flows[positive_mask]
# embedding normalization
if self.embed_norm:
embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True)
# Spatially random sampling (512 samples)
flows_flatten = flows.view(flows.shape[0], 2, -1)
random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda())
flows_sample = torch.index_select(flows_flatten, 2, random_locations)
# K_f
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) -
torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3,
keepdim=False) ** 2
exp_k_f = torch.exp(-k_f / 2. / self.sigma)
# mask
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda())
mask = torch.ones_like(exp_k_f) - eye
# S_f
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True)
# K_theta
embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1)
embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations)
embeddings_sample_norm = torch.norm(embeddings_sample, p=2, dim=1, keepdim=True)
k_theta = 0.25 * (torch.matmul(embeddings_sample.permute(0, 2, 1), embeddings_sample)) / (self.epsilon + torch.matmul(embeddings_sample_norm.permute(0, 2, 1), embeddings_sample_norm))
exp_k_theta = torch.exp(k_theta)
# S_theta
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + eye
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True)
# loss
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta)))
return loss
class CrossPixelSimilarityFullLoss():
'''
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py
'''
def __init__(self, sigma=0.01):
self.sigma = sigma
self.epsilon = 1.0e-15
self.embed_norm = True # loss does not decrease no matter it is true or false.
def __call__(self, embeddings, flows):
'''
embedding: Variable Nx256xHxW (not hyper-column)
flows: Variable Nx2xHxW
'''
assert flows.size(1) == 2
# downsample flow
factor = flows.shape[2] // embeddings.shape[2]
flows = nn.functional.avg_pool2d(flows, factor, factor)
assert flows.shape[2] == embeddings.shape[2]
# flow normalization
positive_mask = (flows > 0)
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.)
flows[positive_mask] = -flows[positive_mask]
# embedding normalization
if self.embed_norm:
embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True)
# Spatially random sampling (512 samples)
flows_flatten = flows.view(flows.shape[0], 2, -1)
#random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda())
#flows_sample = torch.index_select(flows_flatten, 2, random_locations)
# K_f
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_flatten, dim=-1).permute(0, 3, 2, 1) -
torch.unsqueeze(flows_flatten, dim=-1).permute(0, 2, 3, 1), p=2, dim=3,
keepdim=False) ** 2
exp_k_f = torch.exp(-k_f / 2. / self.sigma)
# mask
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda())
mask = torch.ones_like(exp_k_f) - eye
# S_f
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True)
# K_theta
embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1)
#embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations)
embeddings_flatten_norm = torch.norm(embeddings_flatten, p=2, dim=1, keepdim=True)
k_theta = 0.25 * (torch.matmul(embeddings_flatten.permute(0, 2, 1), embeddings_flatten)) / (self.epsilon + torch.matmul(embeddings_flatten_norm.permute(0, 2, 1), embeddings_flatten_norm))
exp_k_theta = torch.exp(k_theta)
# S_theta
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + eye
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True)
# loss
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta)))
return loss
def get_column(embeddings, index, full_size):
col = []
for embd in embeddings:
ind = (index.float() / full_size * embd.size(2)).long()
col.append(torch.index_select(embd.view(embd.shape[0], embd.shape[1], -1), 2, ind))
return torch.cat(col, dim=1) # N x coldim x sparsenum
class CrossPixelSimilarityColumnLoss(nn.Module):
'''
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py
'''
def __init__(self, sigma=0.0036, sampling_size=512):
super(CrossPixelSimilarityColumnLoss, self).__init__()
self.sigma = sigma
self.sampling_size = sampling_size
self.epsilon = 1.0e-15
self.embed_norm = True # loss does not decrease no matter it is true or false.
self.mlp = nn.Sequential(
nn.Linear(96 + 96 + 384 + 256 + 4096, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 16))
def forward(self, feats, flows):
'''
embedding: Variable Nx256xHxW (not hyper-column)
flows: Variable Nx2xHxW
'''
assert flows.size(1) == 2
# flow normalization
positive_mask = (flows > 0)
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.)
flows[positive_mask] = -flows[positive_mask]
# Spatially random sampling (512 samples)
flows_flatten = flows.view(flows.shape[0], 2, -1)
random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda())
flows_sample = torch.index_select(flows_flatten, 2, random_locations)
# K_f
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) -
torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3,
keepdim=False) ** 2
exp_k_f = torch.exp(-k_f / 2. / self.sigma)
# mask
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda())
mask = torch.ones_like(exp_k_f) - eye
# S_f
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True)
# column
column = get_column(feats, random_locations, flows.shape[2])
embedding = self.mlp(column)
# K_theta
embedding_norm = torch.norm(embedding, p=2, dim=1, keepdim=True)
k_theta = 0.25 * (torch.matmul(embedding.permute(0, 2, 1), embedding)) / (self.epsilon + torch.matmul(embedding_norm.permute(0, 2, 1), embedding_norm))
exp_k_theta = torch.exp(k_theta)
# S_theta
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + math.exp(-0.75) * eye
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True)
# loss
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta)))
return loss
def print_info(name, var):
print(name, var.size(), torch.max(var).data.cpu()[0], torch.min(var).data.cpu()[0], torch.mean(var).data.cpu()[0])
def MaskL1Loss(input, target, mask):
input_size = input.size()
res = torch.sum(torch.abs(input * mask - target * mask))
total = torch.sum(mask).item()
if total > 0:
res = res / (total * input_size[1])
return res