|
| 1 | +import argparse |
| 2 | +import os |
| 3 | +from model import GNN |
| 4 | +import pytorch_lightning as pl |
| 5 | +from functools import partial |
| 6 | +import torch |
| 7 | +import collections |
| 8 | +from train import TrainerModel |
| 9 | +from sklearn.model_selection import KFold |
| 10 | +import glob |
| 11 | +import torch_geometric |
| 12 | + |
| 13 | + |
| 14 | +def load_dataset(pts,file_path): |
| 15 | + all_files = sorted(glob.glob(f"{file_path}/*.pt")) |
| 16 | + print(all_files) |
| 17 | + selected_files = [] |
| 18 | + for i in all_files: |
| 19 | + for j in pts: |
| 20 | + if i.endswith(str(j) + ".pt"): |
| 21 | + graph = torch.load(i) |
| 22 | + print(graph) |
| 23 | + selected_files.append(graph) |
| 24 | + return selected_files |
| 25 | + |
| 26 | +def main(args,idx): |
| 27 | + |
| 28 | + |
| 29 | + XFOLD = glob.glob(f"{args.file_path}/*.pt") |
| 30 | + skf = KFold(n_splits=3,shuffle= True, random_state = 12345) |
| 31 | + KFOLD = [] |
| 32 | + for x in skf.split(XFOLD): |
| 33 | + KFOLD.append(x) |
| 34 | + |
| 35 | + |
| 36 | + cwd = os.getcwd() |
| 37 | + |
| 38 | + def write(director,name,*string): |
| 39 | + string = [str(i) for i in string] |
| 40 | + string = " ".join(string) |
| 41 | + with open(os.path.join(director,name),"a") as f: |
| 42 | + f.write(string + "\n") |
| 43 | + |
| 44 | + args.folder_name = "log" + "/" + str(idx) |
| 45 | + store_dir = args.folder_name + "/" + "checkpoints_" + str(args.fold) + "/" |
| 46 | + print = partial(write,cwd, args.folder_name + "/" +"log_f" + str(args.fold)) |
| 47 | + |
| 48 | + os.makedirs(store_dir, exist_ok= True) |
| 49 | + |
| 50 | + print(args) |
| 51 | + |
| 52 | + |
| 53 | + train_patient, test_patient = KFOLD[args.fold] |
| 54 | + |
| 55 | + train_dataset = load_dataset(train_patient,args.file_path) |
| 56 | + test_dataset = load_dataset(test_patient,args.file_path) |
| 57 | + |
| 58 | + train_loader = torch_geometric.loader.DataLoader( |
| 59 | + train_dataset, |
| 60 | + batch_size=1, |
| 61 | + ) |
| 62 | + |
| 63 | + test_loader = torch_geometric.loader.DataLoader( |
| 64 | + test_dataset, |
| 65 | + batch_size=1, |
| 66 | + ) |
| 67 | + |
| 68 | + print(len(train_loader), len(test_loader)) |
| 69 | + |
| 70 | + model = GNN(args.hidden_channels, args.embed_dim, args.out_channels, args.gnn_layer,args.feature_dim,args.name_dim) |
| 71 | + CONFIG = collections.namedtuple('CONFIG', ['lr', 'logfun', 'verbose_step', 'weight_decay', 'store_dir']) |
| 72 | + config = CONFIG(args.lr, print, args.verbose_step, args.weight_decay,store_dir) |
| 73 | + |
| 74 | + if args.checkpoints != None: |
| 75 | + model.load_state_dict(torch.load(args.checkpoints,map_location = torch.device("cpu"))) |
| 76 | + |
| 77 | + model = TrainerModel(config, model,args.meta, args.name_feature) |
| 78 | + |
| 79 | + plt = pl.Trainer(max_epochs = args.epoch,num_nodes=1, gpus=args.gpus, val_check_interval = args.val_interval,checkpoint_callback = False, logger = False) |
| 80 | + plt.fit(model,train_dataloaders=train_loader,val_dataloaders=test_loader) |
| 81 | + |
| 82 | +if __name__ == "__main__": |
| 83 | + |
| 84 | + parser = argparse.ArgumentParser() |
| 85 | + parser.add_argument("--epoch", default = 300, type = int) |
| 86 | + parser.add_argument("--fold", default = 0, type = int) |
| 87 | + parser.add_argument("--gpus", default = 1, type = int) |
| 88 | + parser.add_argument("--acce", default = "ddp", type = str) |
| 89 | + parser.add_argument("--val_interval", default = 0.8, type = float) |
| 90 | + parser.add_argument("--lr", default = 1e-4*5, type = float) |
| 91 | + parser.add_argument("--verbose_step", default = 10, type = int) |
| 92 | + parser.add_argument("--weight_decay", default = 1e-4, type = float) |
| 93 | + parser.add_argument("--checkpoints", default = None, type = str) |
| 94 | + parser.add_argument("--output", default = None, type = str) |
| 95 | + parser.add_argument("--folder_name", default = "log", type = str) |
| 96 | + parser.add_argument("--runs", default = 1, type = int) |
| 97 | + parser.add_argument("--file_path", default="extracted_feature/resnet18/graph", type = str) |
| 98 | + parser.add_argument("--name_feature", default="name_feature/Intel/neural-chat-7b-v3-1", type = str) |
| 99 | + parser.add_argument("--meta", default="preprocess/", type = str) |
| 100 | + parser.add_argument("--feature_dim", default=512, type = int) |
| 101 | + parser.add_argument("--name_dim", default=4096, type = int) |
| 102 | + parser.add_argument("--hidden_channels", default=512, type = int) |
| 103 | + parser.add_argument("--embed_dim", default=256, type = int) |
| 104 | + parser.add_argument("--out_channels", default=256, type = int) |
| 105 | + parser.add_argument("--gnn_layer", default=4, type = int) |
| 106 | + |
| 107 | + |
| 108 | + args = parser.parse_args() |
| 109 | + for idx in range(args.runs): |
| 110 | + for fold in range(3): |
| 111 | + args.fold = fold |
| 112 | + main(args,idx) |
| 113 | + |
0 commit comments