-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path1_BerkeleyMHAD_SemanticFusion.py
549 lines (491 loc) · 29.9 KB
/
1_BerkeleyMHAD_SemanticFusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import os
import sys
import time
import argparse
import random
import logging
import torch
import torchvision
from torchvision import models
import torch.optim as optim
import torchvision.transforms as transforms
import dataset
import model.backbone as backbone
import numpy as np
import metric.loss as loss
import metric.pairsampler as pair
import torch.nn.functional as F
from tqdm import tqdm
from torch.utils.data import DataLoader
from metric.utils import recall, count_parameters_in_MB, accuracy, AverageMeter
from metric.batchsampler import NPairs
from model.embedding import LinearEmbedding
from itertools import cycle
#from kd_losses import *
import warnings
warnings.filterwarnings("ignore")
#os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
parser = argparse.ArgumentParser()
LookupChoices = type('', (argparse.Action, ), dict(__call__=lambda a, p, n, v, o: setattr(n, a.dest, a.choices[v])))
parser.add_argument('--dataset', type=str, default='UTD', choices=['UTD', 'MMAct'])
parser.add_argument('--acc_one_train_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer01_GAF_train/")
parser.add_argument('--acc_one_test_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer01_GAF_test/")
parser.add_argument('--acc_two_train_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer02_GAF_train/")
parser.add_argument('--acc_two_test_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer02_GAF_test/")
parser.add_argument('--acc_three_train_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer03_GAF_train/")
parser.add_argument('--acc_three_test_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer03_GAF_test/")
parser.add_argument('--acc_four_train_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer04_GAF_train/")
parser.add_argument('--acc_four_test_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer04_GAF_test/")
parser.add_argument('--acc_five_train_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer05_GAF_train/")
parser.add_argument('--acc_five_test_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer05_GAF_test/")
parser.add_argument('--acc_six_train_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer06_GAF_train/")
parser.add_argument('--acc_six_test_path', type=str, default=r"D:/Berkeley-MHAD/Accelerometer/Shimmer06_GAF_test/")
parser.add_argument('--modality', type=str, default='a', choices=['a_p','a_w','g','o'])
parser.add_argument('--output_dir', type=str, default='output/')
parser.add_argument('--mode',
choices=["train", "eval"],
default="train")
parser.add_argument('--load',
default=None)
parser.add_argument('--base',
choices=dict(googlenet=backbone.GoogleNet,
inception_v1bn=backbone.InceptionV1BN,
resnet18=backbone.ResNet18,
resnet50=backbone.ResNet50,
vggnet16=backbone.VggNet16,
Sevggnet16=backbone.SeVggNet16,
SeFusionVGG16=backbone.SeFusionVGG16,
SemanticFusionVGG16=backbone.SemanticFusionVGG16,
SemanticFusionVGG16_MMAct=backbone.SemanticFusionVGG16_MMAct,
SemanticFusionVGG16_Berkeley=backbone.SemanticFusionVGG16_Berkeley,
),
default=backbone.VggNet16,
action=LookupChoices)
parser.add_argument('--sample',
choices=dict(random=pair.RandomNegative,
hard=pair.HardNegative,
all=pair.AllPairs,
semihard=pair.SemiHardNegative,
distance=pair.DistanceWeighted),
default=pair.AllPairs,
action=LookupChoices)
parser.add_argument('--loss',
choices=dict(l1_triplet=loss.L1Triplet,
l2_triplet=loss.L2Triplet,
contrastive=loss.ContrastiveLoss),
default=loss.L2Triplet,
action=LookupChoices)
parser.add_argument('--num_classes', default=27, type=int)
parser.add_argument('--margin', type=float, default=0.2)
parser.add_argument('--embedding_size', type=int, default=128)
parser.add_argument('--l2normalize', choices=['true', 'false'], default='true')
parser.add_argument('--lr', default=1e-5, type=float)
parser.add_argument('--lr_decay_epochs', type=int, default=[25, 30, 35], nargs='+')
parser.add_argument('--lr_decay_gamma', default=0.5, type=float)
parser.add_argument('--batch', default=64, type=int)
parser.add_argument('--num_image_per_class', default=5, type=int)
parser.add_argument('--epochs', default=40, type=int)
parser.add_argument('--iter_per_epoch', type=int, default=100)
parser.add_argument('--recall', default=[1], type=int, nargs='+')
parser.add_argument('--seed', default=random.randint(1, 1000), type=int)
parser.add_argument('--data', default='data')
parser.add_argument('--save_dir', default=None)
parser.add_argument('--print_freq', type=int, default=1, help='frequency of showing training results on console')
opts = parser.parse_args()
opts.dataset='Berkeley_oneGPU'
#opts.load=r"E:/Multi-modal Action Recognition/My codes/Relational Knowledge Distillation/output/UTD_a_g_SemanticFusionVGG16_margin0.2_epochs100_batch16_lr0.0001/tea_best_acc.pth"
opts.num_classes=11
opts.mode='train'
opts.modality='6a'
opts.base=backbone.SemanticFusionVGG16_Berkeley
opts.sample=pair.DistanceWeighted
opts.loss=loss.L2Triplet
opts.lr=0.0001
opts.margin=0.2
opts.batch=4
opts.epochs=100
opts.lr_decay_epochs=[50]
opts.lr_decay_gamma=0.5
#opts.embedding_size=256
opts.print_freq=1
opts.output_dir='output/'
opts.save_dir= opts.output_dir+'_'.join(map(str, [opts.dataset, opts.modality, 'SemanticFusionVGG16_Berkeley',
'margin'+str(opts.margin), 'epochs'+str(opts.epochs),'batch'+str(opts.batch), 'lr'+str(opts.lr)]))
if not os.path.exists(opts.save_dir):
os.makedirs(opts.save_dir)
log_format = '%(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format)
fh = logging.FileHandler(os.path.join(opts.save_dir, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
def loadtraindata(data_path):
path = data_path # 路径
trainset = torchvision.datasets.ImageFolder(path,
transform=transforms.Compose([
transforms.Resize((224, 224)), # 将图片缩放到指定大小(h,w)或者保持长宽比并缩放最短的边到int大小
#transforms.RandomHorizontalFlip(),
#transforms.CenterCrop(64),
transforms.ToTensor(),
#transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
#std = [ 0.229, 0.224, 0.225 ]),
])
)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=opts.batch,
shuffle=True, num_workers=2, drop_last=True)
return trainloader
def loadtestdata(data_path):
path = data_path
testset = torchvision.datasets.ImageFolder(path,
transform=transforms.Compose([
transforms.Resize((224, 224)), # 将图片缩放到指定大小(h,w)或者保持长宽比并缩放最短的边到int大小
#transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
#std = [ 0.229, 0.224, 0.225 ]),
])
)
testloader = torch.utils.data.DataLoader(testset, batch_size=opts.batch,
shuffle=False, num_workers=2,drop_last=True)
return testloader
def main():
for set_random_seed in [random.seed, torch.manual_seed, torch.cuda.manual_seed_all]:
set_random_seed(opts.seed)
logging.info("args = %s", opts)
a1_train_loader = loadtraindata(opts.acc_one_train_path)
a1_test_loader = loadtestdata(opts.acc_one_test_path)
a2_train_loader = loadtraindata(opts.acc_two_train_path)
a2_test_loader = loadtestdata(opts.acc_two_test_path)
a3_train_loader = loadtraindata(opts.acc_three_train_path)
a3_test_loader = loadtestdata(opts.acc_three_test_path)
a4_train_loader = loadtraindata(opts.acc_four_train_path)
a4_test_loader = loadtestdata(opts.acc_four_test_path)
a5_train_loader = loadtraindata(opts.acc_five_train_path)
a5_test_loader = loadtestdata(opts.acc_five_test_path)
a6_train_loader = loadtraindata(opts.acc_six_train_path)
a6_test_loader = loadtestdata(opts.acc_six_test_path)
Berkeley_Glove=np.load('data/Berkeley_Glove.npy')
Berkeley_Glove=torch.from_numpy(Berkeley_Glove)
Berkeley_Glove=Berkeley_Glove.float().cuda()
#UTD_Glove=F.normalize(UTD_Glove, p=2, dim=1)
torch.cuda.empty_cache()
logging.info('----------- Network Initialization --------------')
model = opts.base(n_classes=opts.num_classes).cuda()
logging.info('Teacher: %s', model)
logging.info('Teacher param size = %fMB', count_parameters_in_MB(model))
logging.info('-----------------------------------------------')
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model, device_ids=[0]).cuda()
if opts.load is not None:
model.load_state_dict(torch.load(opts.load))
print("Loaded Model from %s" % opts.load)
logging.info("Number of images in Acc one Training Set: %d" % len(a1_train_loader.dataset))
logging.info("Number of images in Acc one Testing set: %d" % len(a1_test_loader.dataset))
logging.info("Number of images in Acc two Training Set: %d" % len(a2_train_loader.dataset))
logging.info("Number of images in Acc two Testing set: %d" % len(a2_test_loader.dataset))
logging.info("Number of images in Acc three Training Set: %d" % len(a3_train_loader.dataset))
logging.info("Number of images in Acc three Testing set: %d" % len(a3_test_loader.dataset))
logging.info("Number of images in Acc four Training Set: %d" % len(a4_train_loader.dataset))
logging.info("Number of images in Acc four Testing set: %d" % len(a4_test_loader.dataset))
logging.info("Number of images in Acc five Training Set: %d" % len(a5_train_loader.dataset))
logging.info("Number of images in Acc five Testing set: %d" % len(a5_test_loader.dataset))
logging.info("Number of images in Acc six Training Set: %d" % len(a6_train_loader.dataset))
logging.info("Number of images in Acc six Testing set: %d" % len(a6_test_loader.dataset))
if opts.load is not None:
model.load_state_dict(torch.load(opts.load))
logging.info("Loaded Model from %s" % opts.load)
#criterion = opts.loss(sampler=opts.sample(), margin=opts.margin)
criterion_cls=torch.nn.CrossEntropyLoss().cuda()
criterion_semantic=torch.nn.MSELoss().cuda()
optimizer = optim.Adam(model.parameters(), lr=opts.lr, weight_decay=1e-5)
#optimizer = torch.optim.SGD(model.parameters(),
# opts.lr,
# momentum=0.9,
# weight_decay=5e-4)
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=opts.lr_decay_epochs, gamma=opts.lr_decay_gamma)
def train(net, a1_loader,a2_loader,a3_loader,a4_loader,a5_loader,a6_loader,ep):
K = opts.recall
batch_time = AverageMeter()
data_time = AverageMeter()
cls_loss = AverageMeter()
semantic_loss = AverageMeter()
a1_train_acc=0.
a2_train_acc=0.
a3_train_acc=0.
a4_train_acc=0.
a5_train_acc=0.
a6_train_acc=0.
net.train()
loss_all = []
end = time.time()
i=1
torch.cuda.empty_cache()
for (a1_images, a1_labels),(a2_images, a2_labels),(a3_images, a3_labels),(a4_images, a4_labels),\
(a5_images, a5_labels),(a6_images, a6_labels) in zip(a1_loader,a2_loader,a3_loader,a4_loader,a5_loader,a6_loader):
data_time.update(time.time() - end)
a1_images, a1_labels = a1_images.cuda(), a1_labels.cuda()
a2_images, a2_labels = a2_images.cuda(), a2_labels.cuda()
a3_images, a3_labels = a3_images.cuda(), a3_labels.cuda()
a4_images, a4_labels = a4_images.cuda(), a4_labels.cuda()
a5_images, a5_labels = a5_images.cuda(), a5_labels.cuda()
a6_images, a6_labels = a6_images.cuda(), a6_labels.cuda()
a1_semantic=Berkeley_Glove[a1_labels]
a2_semantic=Berkeley_Glove[a2_labels]
a3_semantic=Berkeley_Glove[a3_labels]
a4_semantic=Berkeley_Glove[a4_labels]
a5_semantic=Berkeley_Glove[a5_labels]
a6_semantic=Berkeley_Glove[a6_labels]
a1_out1, a2_out1, a3_out1, a4_out1,a5_out1, a6_out1,\
a1_out2, a2_out2, a3_out2, a4_out2, a5_out2, a6_out2,\
a1_out3, a2_out3, a3_out3, a4_out3, a5_out3, a6_out3,\
a1_out4, a2_out4, a3_out4, a4_out4, a5_out4, a6_out4,\
a1_out5, a2_out5, a3_out5, a4_out5, a5_out5, a6_out5,\
a1_out6, a2_out6, a3_out6, a4_out6, a5_out6, a6_out6,\
a1_out7, a2_out7, a3_out7, a4_out7, a5_out7, a6_out7,\
a1_out8, a2_out8, a3_out8, a4_out8, a5_out8, a6_out8\
=net(a1_images, a2_images, a3_images,a4_images, a5_images, a6_images, True)
a1_pred=torch.max(a1_out8,1)[1]
a2_pred=torch.max(a2_out8,1)[1]
a3_pred=torch.max(a3_out8,1)[1]
a4_pred=torch.max(a4_out8,1)[1]
a5_pred=torch.max(a5_out8,1)[1]
a6_pred=torch.max(a6_out8,1)[1]
a1_num_correct=(a1_pred==a1_labels).sum()
a2_num_correct=(a2_pred==a2_labels).sum()
a3_num_correct=(a3_pred==a3_labels).sum()
a4_num_correct=(a4_pred==a4_labels).sum()
a5_num_correct=(a5_pred==a5_labels).sum()
a6_num_correct=(a6_pred==a6_labels).sum()
a1_train_acc+=a1_num_correct.item()
a2_train_acc+=a2_num_correct.item()
a3_train_acc+=a3_num_correct.item()
a4_train_acc+=a4_num_correct.item()
a5_train_acc+=a5_num_correct.item()
a6_train_acc+=a6_num_correct.item()
#loss_triplet = criterion(embedding, labels)
a1_loss_cls=criterion_cls(a1_out8, a1_labels)
a2_loss_cls=criterion_cls(a2_out8, a2_labels)
a3_loss_cls=criterion_cls(a3_out8, a3_labels)
a4_loss_cls=criterion_cls(a4_out8, a4_labels)
a5_loss_cls=criterion_cls(a5_out8, a5_labels)
a6_loss_cls=criterion_cls(a6_out8, a6_labels)
a1_semantic_loss=criterion_semantic(a1_out7, a1_semantic)
a2_semantic_loss=criterion_semantic(a2_out7, a2_semantic)
a3_semantic_loss=criterion_semantic(a3_out7, a3_semantic)
a4_semantic_loss=criterion_semantic(a4_out7, a4_semantic)
a5_semantic_loss=criterion_semantic(a5_out7, a5_semantic)
a6_semantic_loss=criterion_semantic(a6_out7, a6_semantic)
loss=(a1_loss_cls+a2_loss_cls+a3_loss_cls+a4_loss_cls+a5_loss_cls+a6_loss_cls+\
a1_semantic_loss+a2_semantic_loss+a3_semantic_loss+a4_semantic_loss+a5_semantic_loss+a6_semantic_loss)/12.0 #+loss_triplet
loss_all.append(loss.item())
#rec = recall(embedding, labels, K=K)
#prec = accuracy(embedding, labels, topk=(1,))
#triplet_loss.update(loss_triplet.item(), images.size(0))
cls_loss.update((a1_loss_cls.item()+a2_loss_cls.item()+a3_loss_cls.item()+a4_loss_cls.item()+a5_loss_cls.item()+a6_loss_cls.item())/6.0,\
a1_images.size(0)+a2_images.size(0)+a3_images.size(0)+a4_images.size(0)+a5_images.size(0)+a6_images.size(0))
semantic_loss.update((a1_semantic_loss.item()+a2_semantic_loss.item()+a3_semantic_loss.item()+a4_semantic_loss.item()+a5_semantic_loss.item()+a6_semantic_loss.item())/6.0, \
a1_images.size(0)+a2_images.size(0)+a3_images.size(0)+a4_images.size(0)+a5_images.size(0)+a6_images.size(0))
#top1_recall.update(rec[0], images.size(0))
#top1_prec.update(prec[0]/100, images.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
batch_time.update(time.time() - end)
end = time.time()
if i % opts.print_freq == 0:
log_str=('Epoch[{0}]:[{1:03}/{2:03}] '
'Batch:{batch_time.val:.4f} '
'Data:{data_time.val:.4f} '
'Cls Loss:{loss_cls.val:.4f}({loss_cls.avg:.4f}) '
'Semantic Loss:{loss_semantic.val:.4f}({loss_semantic.avg:.4f}) '
#'Triplet:{loss_triplet.val:.4f}({loss_triplet.avg:.4f}) '
#'recall@1:{top1_recall.val:.2f}({top1_recall.avg:.2f}) '
#'pre@1:{top1_prec.val:.2f}({top1_prec.avg:.2f}) '.
.format(ep, i, len(a1_loader), batch_time=batch_time, data_time=data_time,
loss_cls=cls_loss, loss_semantic=semantic_loss))
logging.info(log_str)
i=i+1
#train_iter.set_description("[Train][Epoch %d] Loss: %.5f" % (ep, loss.item()))
logging.info('[Epoch %d] Loss: %.5f A1 Acc: %.5f A2 Acc: %.5f A3 Acc: %.5f A4 Acc: %.5f A5 Acc: %.5f A6 Acc: %.5f' % \
(ep, torch.Tensor(loss_all).mean(), 100*a1_train_acc/(len(a1_loader.dataset)), 100*a2_train_acc/(len(a2_loader.dataset)),\
100*a3_train_acc/(len(a3_loader.dataset)), 100*a4_train_acc/(len(a4_loader.dataset)),100*a5_train_acc/(len(a5_loader.dataset)), 100*a6_train_acc/(len(a6_loader.dataset))))
def eval(net, a1_loader,a2_loader,a3_loader,a4_loader, a5_loader,a6_loader,ep):
#K = opts.recall
net.eval()
#test_iter = tqdm(loader, ncols=80)
a1_embeddings_all, a2_embeddings_all,a3_embeddings_all,a4_embeddings_all,a5_embeddings_all,a6_embeddings_all,\
a1_labels_all,a2_labels_all,a3_labels_all,a4_labels_all,a5_labels_all,a6_labels_all = [], [], [], [], [], [], [], [], [], [], [], []
a1_correct = 0
a2_correct = 0
a3_correct = 0
a4_correct = 0
a5_correct = 0
a6_correct = 0
all_correct = 0
#test_iter.set_description("[Eval][Epoch %d]" % ep)
with torch.no_grad():
for (a1_images, a1_labels),(a2_images, a2_labels),(a3_images, a3_labels),(a4_images, a4_labels),\
(a5_images, a5_labels),(a6_images, a6_labels) in zip(a1_loader,a2_loader,a3_loader,a4_loader,a5_loader,a6_loader):
a1_images, a1_labels = a1_images.cuda(), a1_labels.cuda()
a2_images, a2_labels = a2_images.cuda(), a2_labels.cuda()
a3_images, a3_labels = a3_images.cuda(), a3_labels.cuda()
a4_images, a4_labels = a4_images.cuda(), a4_labels.cuda()
a5_images, a5_labels = a5_images.cuda(), a5_labels.cuda()
a6_images, a6_labels = a6_images.cuda(), a6_labels.cuda()
a1_semantic=Berkeley_Glove[a1_labels]
a2_semantic=Berkeley_Glove[a2_labels]
a3_semantic=Berkeley_Glove[a3_labels]
a4_semantic=Berkeley_Glove[a4_labels]
a5_semantic=Berkeley_Glove[a5_labels]
a6_semantic=Berkeley_Glove[a6_labels]
a1_embedding,a2_embedding,a3_embedding,a4_embedding,a5_embedding,a6_embedding = net(a1_images, a2_images, a3_images,a4_images, a5_images, a6_images)
a1_pred=torch.max(a1_embedding,1)[1]
a2_pred=torch.max(a2_embedding,1)[1]
a3_pred=torch.max(a3_embedding,1)[1]
a4_pred=torch.max(a4_embedding,1)[1]
a5_pred=torch.max(a5_embedding,1)[1]
a6_pred=torch.max(a6_embedding,1)[1]
all_pred=torch.max((a1_embedding+a2_embedding+a2_embedding+a3_embedding+a4_embedding+a5_embedding+a6_embedding),1)[1]
a1_num_correct=(a1_pred==a1_labels).sum()
a2_num_correct=(a2_pred==a2_labels).sum()
a3_num_correct=(a3_pred==a3_labels).sum()
a4_num_correct=(a4_pred==a4_labels).sum()
a5_num_correct=(a5_pred==a5_labels).sum()
a6_num_correct=(a6_pred==a6_labels).sum()
all_num_correct=(all_pred==a1_labels).sum()
a1_correct+=a1_num_correct.item()
a2_correct+=a2_num_correct.item()
a3_correct+=a3_num_correct.item()
a4_correct+=a4_num_correct.item()
a5_correct+=a5_num_correct.item()
a6_correct+=a6_num_correct.item()
all_correct+=all_num_correct.item()
a1_embeddings_all.append(a1_embedding.data)
a2_embeddings_all.append(a2_embedding.data)
a3_embeddings_all.append(a3_embedding.data)
a4_embeddings_all.append(a4_embedding.data)
a5_embeddings_all.append(a5_embedding.data)
a6_embeddings_all.append(a6_embedding.data)
a1_labels_all.append(a1_labels.data)
a2_labels_all.append(a2_labels.data)
a3_labels_all.append(a3_labels.data)
a4_labels_all.append(a4_labels.data)
a5_labels_all.append(a5_labels.data)
a6_labels_all.append(a6_labels.data)
a1_embeddings_all = torch.cat(a1_embeddings_all).cpu()
a2_embeddings_all = torch.cat(a2_embeddings_all).cpu()
a3_embeddings_all = torch.cat(a3_embeddings_all).cpu()
a4_embeddings_all = torch.cat(a4_embeddings_all).cpu()
a5_embeddings_all = torch.cat(a5_embeddings_all).cpu()
a6_embeddings_all = torch.cat(a6_embeddings_all).cpu()
a1_labels_all = torch.cat(a1_labels_all).cpu()
a2_labels_all = torch.cat(a2_labels_all).cpu()
a3_labels_all = torch.cat(a3_labels_all).cpu()
a4_labels_all = torch.cat(a4_labels_all).cpu()
a5_labels_all = torch.cat(a5_labels_all).cpu()
a6_labels_all = torch.cat(a6_labels_all).cpu()
#rec = recall(embeddings_all, labels_all, K=K)
#s_prec = accuracy(s_embeddings_all, s_labels_all, topk=(1,))
a1_acc = a1_correct/(len(a1_loader.dataset))
a2_acc = a2_correct/(len(a2_loader.dataset))
a3_acc = a3_correct/(len(a3_loader.dataset))
a4_acc = a4_correct/(len(a4_loader.dataset))
a5_acc = a5_correct/(len(a5_loader.dataset))
a6_acc = a6_correct/(len(a6_loader.dataset))
all_acc = all_correct/(len(a1_loader.dataset))
logging.info('[Epoch %d] A1 acc: [%.4f] A2 acc: [%.4f] A3 acc: [%.4f] A4 acc: [%.4f] A5 acc: [%.4f] A6 acc: [%.4f] Combined acc: [%.4f]' \
% (ep, a1_acc*100, a2_acc*100, a3_acc*100, a4_acc*100, a5_acc*100, a6_acc*100, all_acc*100))
return a1_acc, a2_acc, a3_acc, a4_acc, a5_acc, a6_acc, all_acc
if opts.mode == "eval":
eval(model, a1_test_loader,a2_test_loader, a3_test_loader,a4_test_loader, a5_test_loader,a6_test_loader,0)
else:
a1_val_acc, a2_val_acc,a3_val_acc, a4_val_acc, a5_val_acc, a6_val_acc,all_val_acc = eval(model, a1_test_loader,a2_test_loader, a3_test_loader,a4_test_loader, a5_test_loader,a6_test_loader,0)
a1_best_acc =a1_val_acc
a2_best_acc =a2_val_acc
a3_best_acc =a3_val_acc
a4_best_acc =a4_val_acc
a5_best_acc =a5_val_acc
a6_best_acc =a6_val_acc
all_best_acc =all_val_acc
for epoch in range(1, opts.epochs+1):
train(model, a1_train_loader, a2_train_loader, a3_train_loader,a4_train_loader, a5_train_loader,a6_train_loader, epoch)
a1_val_acc, a2_val_acc, a3_val_acc, a4_val_acc, a5_val_acc, a6_val_acc, all_val_acc = eval(model, a1_test_loader,a2_test_loader, a3_test_loader,a4_test_loader, a5_test_loader,a6_test_loader,epoch)
if a1_best_acc < a1_val_acc:
a1_best_acc = a1_val_acc
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
torch.save(model.state_dict(), "%s/%s"%(opts.save_dir, "a1_best_acc.pth"))
if a2_best_acc < a2_val_acc:
a2_best_acc = a2_val_acc
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
torch.save(model.state_dict(), "%s/%s"%(opts.save_dir, "a2_best_acc.pth"))
if a3_best_acc < a3_val_acc:
a3_best_acc = a3_val_acc
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
torch.save(model.state_dict(), "%s/%s"%(opts.save_dir, "a3_best_acc.pth"))
if a4_best_acc < a4_val_acc:
a4_best_acc = a4_val_acc
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
torch.save(model.state_dict(), "%s/%s"%(opts.save_dir, "a4_best_acc.pth"))
if a5_best_acc < a5_val_acc:
a5_best_acc = a5_val_acc
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
torch.save(model.state_dict(), "%s/%s"%(opts.save_dir, "a5_best_acc.pth"))
if a6_best_acc < a6_val_acc:
a6_best_acc = a6_val_acc
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
torch.save(model.state_dict(), "%s/%s"%(opts.save_dir, "a6_best_acc.pth"))
if all_best_acc < all_val_acc:
all_best_acc = all_val_acc
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
torch.save(model.state_dict(), "%s/%s"%(opts.save_dir, "all_best_acc.pth"))
#F_measure=(2*best_prec/100*best_rec)/(best_prec/100+best_rec)
if opts.save_dir is not None:
if not os.path.isdir(opts.save_dir):
os.mkdir(opts.save_dir)
torch.save(model.state_dict(), "%s/%s"%(opts.save_dir, "last.pth"))
with open("%s/result.txt"%opts.save_dir, 'w') as f:
#f.write("Best recall@1: %.4f\n" % (best_rec * 100))
#f.write("Best prec@1: %.4f\n" % (best_prec))
f.write("Best Acc one acc: %.4f\n" % (a1_best_acc*100))
f.write("Best Acc two acc: %.4f\n" % (a2_best_acc*100))
f.write("Best Acc three acc: %.4f\n" % (a3_best_acc*100))
f.write("Best Acc four acc: %.4f\n" % (a4_best_acc*100))
f.write("Best Acc five acc: %.4f\n" % (a5_best_acc*100))
f.write("Best Acc six acc: %.4f\n" % (a6_best_acc*100))
f.write("Best Combined acc: %.4f\n" % (all_best_acc*100))
#f.write("Final recall@1: %.4f\n" % (val_recall * 100))
#f.write("Final Prec@1: %.4f\n" % (val_prec))
f.write("Final Acc one acc: %.4f\n" % (a1_val_acc*100))
f.write("Final Acc two acc: %.4f\n" % (a2_val_acc*100))
f.write("Final Acc three acc: %.4f\n" % (a3_val_acc*100))
f.write("Final Acc four acc: %.4f\n" % (a4_val_acc*100))
f.write("Final Acc five acc: %.4f\n" % (a5_val_acc*100))
f.write("Final Acc six acc: %.4f\n" % (a6_val_acc*100))
f.write("Final Combined acc: %.4f\n" % (all_val_acc*100))
#f.write("F-measure: %.4f\n" % (F_measure*100))
#logging.info("Best Recall@1: %.4f" % (best_rec*100))
#logging.info("Best Prec@1: %.4f" % best_prec)
logging.info("Best Acc one acc: %.4f" % (a1_best_acc*100))
logging.info("Best Acc two acc: %.4f" % (a2_best_acc*100))
logging.info("Best Acc three acc: %.4f" % (a3_best_acc*100))
logging.info("Best Acc four acc: %.4f" % (a4_best_acc*100))
logging.info("Best Acc five acc: %.4f" % (a5_best_acc*100))
logging.info("Best Acc six acc: %.4f" % (a6_best_acc*100))
logging.info("Best Combined acc: %.4f\n" % (all_best_acc*100))
#logging.info("F-measure: %.4f" % (F_measure*100))
if __name__ == '__main__':
main()