-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
55 lines (41 loc) · 2.09 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse, time, os, operator
import torch
import source.agent as agt
import source.utils as utils
import source.connector as con
import source.procedure as proc
import source.datamanager as dman
def main():
os.environ["CUDA_VISIBLE_DEVICES"]=FLAGS.gpu
ngpu = FLAGS.ngpu
if(not(torch.cuda.is_available())): ngpu = 0
device = torch.device("cuda" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
dataset = dman.DataSet(dataname=FLAGS.dataname)
agent = agt.Agent(nn=con.connect(nn=FLAGS.nn), \
dim_h=dataset.dim_h, dim_w=dataset.dim_w, dim_c=dataset.dim_c, num_class=dataset.num_class, \
k_size=FLAGS.k_size, filters=FLAGS.filters, \
learning_rate=FLAGS.lr, path_ckpt='Checkpoint', ngpu=ngpu, device=device)
time_tr = time.time()
proc.training(agent=agent, dataset=dataset, batch_size=FLAGS.batch, epochs=FLAGS.epochs, sub_k=FLAGS.sub_k, n_stage=FLAGS.n_stage)
time_te = time.time()
best_dict, num_model = proc.test(agent=agent, dataset=dataset)
time_fin = time.time()
tr_time = time_te - time_tr
te_time = time_fin - time_te
print("Time (TR): %.5f [sec]" %(tr_time))
print("Time (TE): %.5f (%.5f [sec/sample])" %(te_time, te_time/num_model/dataset.num_te))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, default="3", help='')
parser.add_argument('--ngpu', type=int, default=1, help='')
parser.add_argument('--dataname', type=str, default="cifar10", help='')
parser.add_argument('--nn', type=int, default=0, help='')
parser.add_argument('--k_size', type=int, default=3, help='')
parser.add_argument('--filters', type=str, default="16,32,64", help='')
parser.add_argument('--lr', type=float, default=1e-3, help='')
parser.add_argument('--batch', type=int, default=128, help='')
parser.add_argument('--epochs', type=int, default=50, help='')
parser.add_argument('--sub_k', type=int, default=1000, help='')
parser.add_argument('--n_stage', type=int, default=10, help='')
FLAGS, unparsed = parser.parse_known_args()
main()