-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
37 lines (26 loc) · 1.46 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os, argparse
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
import source.neuralnet as nn
import source.datamanager as dman
import source.solver as solver
def main():
dataset = dman.Dataset(normalize=FLAGS.datnorm)
if(not(torch.cuda.is_available())): FLAGS.ngpu = 0
device = torch.device("cuda" if (torch.cuda.is_available() and FLAGS.ngpu > 0) else "cpu")
neuralnet = nn.NeuralNet(height=dataset.height, width=dataset.width, channel=dataset.channel, \
device=device, ngpu=FLAGS.ngpu, \
ksize=FLAGS.ksize, z_dim=FLAGS.z_dim, learning_rate=FLAGS.lr)
solver.training(neuralnet=neuralnet, dataset=dataset, epochs=FLAGS.epoch, batch_size=FLAGS.batch)
solver.test(neuralnet=neuralnet, dataset=dataset)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ngpu', type=int, default=1, help='-')
parser.add_argument('--datnorm', type=bool, default=True, help='Data normalization')
parser.add_argument('--ksize', type=int, default=3, help='kernel size for constructing Neural Network')
parser.add_argument('--z_dim', type=int, default=128, help='Dimension of latent vector')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate for training')
parser.add_argument('--epoch', type=int, default=100, help='Training epoch')
parser.add_argument('--batch', type=int, default=32, help='Mini batch size')
FLAGS, unparsed = parser.parse_known_args()
main()