-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
56 lines (44 loc) · 1.84 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import argparse, time, os, operator
import tensorflow as tf
import source.connector as con
import source.tf_process as tfp
import source.datamanager as dman
def main():
os.environ["CUDA_VISIBLE_DEVICES"]=FLAGS.gpu
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
print(e)
dataset = dman.Dataset()
agent = con.connect(nn=FLAGS.nn).Agent(\
dim_h = dataset.height, \
dim_w = dataset.width, \
dim_c = dataset.channel, \
num_class = dataset.num_class, \
ksize = FLAGS.ksize, \
learning_rate = FLAGS.lr, \
path_ckpt = 'Checkpoint')
time_tr = time.time()
tfp.training(agent=agent, dataset=dataset, \
batch_size=FLAGS.batch, epochs=FLAGS.epochs)
time_te = time.time()
tfp.test(agent=agent, dataset=dataset, batch_size=FLAGS.batch)
time_fin = time.time()
print("Time (TR): %.5f [sec]" %(time_te - time_tr))
te_time = time_fin - time_te
print("Time (TE): %.5f (%.5f [sec/sample])" %(te_time, te_time/dataset.num_te))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, default="0", help='')
parser.add_argument('--nn', type=int, default=0, help='')
parser.add_argument('--ksize', type=int, default=3, help='')
parser.add_argument('--lr', type=float, default=1e-4, help='')
parser.add_argument('--batch', type=int, default=32, help='')
parser.add_argument('--epochs', type=int, default=100, help='')
FLAGS, unparsed = parser.parse_known_args()
main()