forked from rcdaudt/fully_convolutional_change_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
155 lines (123 loc) · 6.27 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Rodrigo Caye Daudt
# https://rcdaudt.github.io/
# Daudt, R. C., Le Saux, B., & Boulch, A. "Fully convolutional siamese networks for change detection". In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 4063-4067). IEEE.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.padding import ReplicationPad2d
class Unet(nn.Module):
"""EF segmentation network."""
def __init__(self, input_nbr, label_nbr):
super(Unet, self).__init__()
self.input_nbr = input_nbr
self.conv11 = nn.Conv2d(input_nbr, 16, kernel_size=3, padding=1)
self.bn11 = nn.BatchNorm2d(16)
self.do11 = nn.Dropout2d(p=0.2)
self.conv12 = nn.Conv2d(16, 16, kernel_size=3, padding=1)
self.bn12 = nn.BatchNorm2d(16)
self.do12 = nn.Dropout2d(p=0.2)
self.conv21 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.bn21 = nn.BatchNorm2d(32)
self.do21 = nn.Dropout2d(p=0.2)
self.conv22 = nn.Conv2d(32, 32, kernel_size=3, padding=1)
self.bn22 = nn.BatchNorm2d(32)
self.do22 = nn.Dropout2d(p=0.2)
self.conv31 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn31 = nn.BatchNorm2d(64)
self.do31 = nn.Dropout2d(p=0.2)
self.conv32 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.bn32 = nn.BatchNorm2d(64)
self.do32 = nn.Dropout2d(p=0.2)
self.conv33 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.bn33 = nn.BatchNorm2d(64)
self.do33 = nn.Dropout2d(p=0.2)
self.conv41 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn41 = nn.BatchNorm2d(128)
self.do41 = nn.Dropout2d(p=0.2)
self.conv42 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.bn42 = nn.BatchNorm2d(128)
self.do42 = nn.Dropout2d(p=0.2)
self.conv43 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.bn43 = nn.BatchNorm2d(128)
self.do43 = nn.Dropout2d(p=0.2)
self.upconv4 = nn.ConvTranspose2d(128, 128, kernel_size=3, padding=1, stride=2, output_padding=1)
self.conv43d = nn.ConvTranspose2d(256, 128, kernel_size=3, padding=1)
self.bn43d = nn.BatchNorm2d(128)
self.do43d = nn.Dropout2d(p=0.2)
self.conv42d = nn.ConvTranspose2d(128, 128, kernel_size=3, padding=1)
self.bn42d = nn.BatchNorm2d(128)
self.do42d = nn.Dropout2d(p=0.2)
self.conv41d = nn.ConvTranspose2d(128, 64, kernel_size=3, padding=1)
self.bn41d = nn.BatchNorm2d(64)
self.do41d = nn.Dropout2d(p=0.2)
self.upconv3 = nn.ConvTranspose2d(64, 64, kernel_size=3, padding=1, stride=2, output_padding=1)
self.conv33d = nn.ConvTranspose2d(128, 64, kernel_size=3, padding=1)
self.bn33d = nn.BatchNorm2d(64)
self.do33d = nn.Dropout2d(p=0.2)
self.conv32d = nn.ConvTranspose2d(64, 64, kernel_size=3, padding=1)
self.bn32d = nn.BatchNorm2d(64)
self.do32d = nn.Dropout2d(p=0.2)
self.conv31d = nn.ConvTranspose2d(64, 32, kernel_size=3, padding=1)
self.bn31d = nn.BatchNorm2d(32)
self.do31d = nn.Dropout2d(p=0.2)
self.upconv2 = nn.ConvTranspose2d(32, 32, kernel_size=3, padding=1, stride=2, output_padding=1)
self.conv22d = nn.ConvTranspose2d(64, 32, kernel_size=3, padding=1)
self.bn22d = nn.BatchNorm2d(32)
self.do22d = nn.Dropout2d(p=0.2)
self.conv21d = nn.ConvTranspose2d(32, 16, kernel_size=3, padding=1)
self.bn21d = nn.BatchNorm2d(16)
self.do21d = nn.Dropout2d(p=0.2)
self.upconv1 = nn.ConvTranspose2d(16, 16, kernel_size=3, padding=1, stride=2, output_padding=1)
self.conv12d = nn.ConvTranspose2d(32, 16, kernel_size=3, padding=1)
self.bn12d = nn.BatchNorm2d(16)
self.do12d = nn.Dropout2d(p=0.2)
self.conv11d = nn.ConvTranspose2d(16, label_nbr, kernel_size=3, padding=1)
self.sm = nn.LogSoftmax(dim=1)
def forward(self, x1, x2):
x = torch.cat((x1, x2), 1)
"""Forward method."""
# Stage 1
x11 = self.do11(F.relu(self.bn11(self.conv11(x))))
x12 = self.do12(F.relu(self.bn12(self.conv12(x11))))
x1p = F.max_pool2d(x12, kernel_size=2, stride=2)
# Stage 2
x21 = self.do21(F.relu(self.bn21(self.conv21(x1p))))
x22 = self.do22(F.relu(self.bn22(self.conv22(x21))))
x2p = F.max_pool2d(x22, kernel_size=2, stride=2)
# Stage 3
x31 = self.do31(F.relu(self.bn31(self.conv31(x2p))))
x32 = self.do32(F.relu(self.bn32(self.conv32(x31))))
x33 = self.do33(F.relu(self.bn33(self.conv33(x32))))
x3p = F.max_pool2d(x33, kernel_size=2, stride=2)
# Stage 4
x41 = self.do41(F.relu(self.bn41(self.conv41(x3p))))
x42 = self.do42(F.relu(self.bn42(self.conv42(x41))))
x43 = self.do43(F.relu(self.bn43(self.conv43(x42))))
x4p = F.max_pool2d(x43, kernel_size=2, stride=2)
# Stage 4d
x4d = self.upconv4(x4p)
pad4 = ReplicationPad2d((0, x43.size(3) - x4d.size(3), 0, x43.size(2) - x4d.size(2)))
x4d = torch.cat((pad4(x4d), x43), 1)
x43d = self.do43d(F.relu(self.bn43d(self.conv43d(x4d))))
x42d = self.do42d(F.relu(self.bn42d(self.conv42d(x43d))))
x41d = self.do41d(F.relu(self.bn41d(self.conv41d(x42d))))
# Stage 3d
x3d = self.upconv3(x41d)
pad3 = ReplicationPad2d((0, x33.size(3) - x3d.size(3), 0, x33.size(2) - x3d.size(2)))
x3d = torch.cat((pad3(x3d), x33), 1)
x33d = self.do33d(F.relu(self.bn33d(self.conv33d(x3d))))
x32d = self.do32d(F.relu(self.bn32d(self.conv32d(x33d))))
x31d = self.do31d(F.relu(self.bn31d(self.conv31d(x32d))))
# Stage 2d
x2d = self.upconv2(x31d)
pad2 = ReplicationPad2d((0, x22.size(3) - x2d.size(3), 0, x22.size(2) - x2d.size(2)))
x2d = torch.cat((pad2(x2d), x22), 1)
x22d = self.do22d(F.relu(self.bn22d(self.conv22d(x2d))))
x21d = self.do21d(F.relu(self.bn21d(self.conv21d(x22d))))
# Stage 1d
x1d = self.upconv1(x21d)
pad1 = ReplicationPad2d((0, x12.size(3) - x1d.size(3), 0, x12.size(2) - x1d.size(2)))
x1d = torch.cat((pad1(x1d), x12), 1)
x12d = self.do12d(F.relu(self.bn12d(self.conv12d(x1d))))
x11d = self.conv11d(x12d)
return self.sm(x11d)