-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.sh
43 lines (36 loc) · 2.92 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
python train.py --name exp_shinkai --CUT_mode CUT --model semi_cut \
--dataroot ./datasets/unpaired_s2a --paired_dataroot ./datasets/pair_s2a \
--checkpoints_dir ./pretrained_models \
--dce_idt --lambda_VGG -1 --lambda_NCE_s 0.05 \
--use_curriculum --gpu_ids 1
##############################################################
: '
usage: train.py
-h, --help show this help message and exit
--dataroot DATAROOT path to unpaired images (should have subfolders trainA, trainB) (default: ./datasets/unpaired_s2a)
--paired_dataroot PAIRED_DATAROOT
path to images (should have subfolders trainA, trainB) (default: ./datasets/pair_s2a)
--name NAME name of the experiment. It decides where to store samples and models (default: experiment_name)
--gpu_ids GPU_IDS gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU (default: 0)
--checkpoints_dir CHECKPOINTS_DIR
models are saved here (default: ./pretrained_models)
--crop_size CROP_SIZE [49/1958]
then crop to this size (default: 256)
--preprocess PREPROCESS
scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none] (default:
resize_and_crop)
--epoch EPOCH which epoch to load? set to latest to use latest cached model (default: latest)
--verbose if specified, print more debugging information (default: False)
--continue_train continue training: load the latest model (default: False)
--epoch_count EPOCH_COUNT
the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ... (default: 1)
--phase PHASE train, val, test, etc (default: train)
--CUT_mode choices=(CUT, cut, FastCUT, fastcut) (default: CUT)
--lambda_GAN weight for GAN loss:GAN(G(X)) (default: 1.0)
--lambda_GAN_p weight for supervised GAN loss:GAN(G(X)) (default: 1.0)
--lambda_HDCE weight for HDCE loss: HDCE(G(X), X) (default: 0.1)
--lambda_SRC weight for SRC loss: SRC(G(X), X) (default: 0.05)
--lambda_NCE_s weight for StylePatchNCE loss: NCE(G(X^p), Y^p) (default: 0.1)
--lambda_VGG weight for VGG content loss: VGG(G(X), Y) (default: 0.1)
--isDecay gradually decrease the weight for the supervised training branch (default: True)
'