-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_eval.py
152 lines (129 loc) · 5.47 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
from scipy.spatial.distance import cdist
import torch
import os
from torch.optim import Adam, lr_scheduler
from opt import opt
from data import Data
from mgn_ptl import MGN_PTL
from mgn import MGN
from loss import Loss
from functions import mean_ap, cmc, re_ranking
def usegpu(element):
if opt.usegpu:
return element.cuda()
else:
return element
class Main():
def __init__(self, reid_model, loss_fn, data_loader):
self.train_loader = data_loader.train_loader
self.test_loader = data_loader.test_loader
self.query_loader = data_loader.query_loader
self.testset = data_loader.testset
self.queryset = data_loader.queryset
self.loss_fn = loss_fn
self.model = reid_model
self.optimizer = self.get_optimizer(reid_model)
self.scheduler = lr_scheduler.MultiStepLR(self.optimizer, milestones=opt.lr_scheduler, gamma=0.1)
def train(self):
self.model.train()
self.scheduler.step()
if opt.arch == 'mgn_ptl':
self.model.resetalllatentstates()
for batch, (inputs, labels) in enumerate(self.train_loader):
print(self.scheduler.get_lr())
inputs = usegpu(inputs)
labels = usegpu(labels)
self.optimizer.zero_grad()
outputs = self.model(inputs)
train_loss = self.loss_fn(outputs, labels)
train_loss.backward()
self.optimizer.step()
def test(self):
test_epoch = self.scheduler.last_epoch + 1
lr = self.scheduler.get_lr()[0]
self.model.eval()
if opt.arch == 'mgn_ptl':
self.model.val = True
qf = self.extract_feature(self.query_loader).numpy()
gf = self.extract_feature(self.test_loader).numpy()
# re rank
q_g_dist = np.dot(qf, np.transpose(gf))
q_q_dist = np.dot(qf, np.transpose(qf))
g_g_dist = np.dot(gf, np.transpose(gf))
dist = re_ranking(q_g_dist, q_q_dist, g_g_dist)
r = cmc(dist, self.queryset.ids, self.testset.ids, self.queryset.cameras, self.testset.cameras,
separate_camera_set=False,
single_gallery_shot=False,
first_match_break=True)
m_ap = mean_ap(dist, self.queryset.ids, self.testset.ids, self.queryset.cameras, self.testset.cameras)
print('epoch:{:d} lr:{:.6f} [ re_rank] mAP: {:.4f} rank1: {:.4f} rank3: {:.4f} rank5: {:.4f} rank10: {:.4f}'
.format(test_epoch, lr, m_ap, r[0], r[2], r[4], r[9]))
# no re rank
dist = cdist(qf, gf)
r = cmc(dist, self.queryset.ids, self.testset.ids, self.queryset.cameras, self.testset.cameras,
separate_camera_set=False,
single_gallery_shot=False,
first_match_break=True)
m_ap = mean_ap(dist, self.queryset.ids, self.testset.ids, self.queryset.cameras, self.testset.cameras)
print('epoch:{:d} lr:{:.6f} [no re_rank] mAP: {:.4f} rank1: {:.4f} rank3: {:.4f} rank5: {:.4f} rank10: {:.4f}'
.format(test_epoch, lr, m_ap, r[0], r[2], r[4], r[9]))
@staticmethod
def get_optimizer(net):
if opt.freeze:
for p in net.parameters():
p.requires_grad = True
for q in net.backbone.parameters():
q.requires_grad = False
optimizer = Adam(filter(lambda p: p.requires_grad, net.parameters()),
lr=opt.lr, weight_decay=5e-4, amsgrad=True)
else:
optimizer = Adam(net.parameters(), lr=opt.lr, weight_decay=5e-4, amsgrad=True)
return optimizer
@staticmethod
def fliphor(inputs):
inv_idx = torch.arange(inputs.size(3) - 1, -1, -1).long() # N x C x H x W
return inputs.index_select(3, inv_idx)
def extract_feature(self, data_loader):
features = torch.FloatTensor()
for (inputs, labels) in data_loader:
ff = torch.FloatTensor(inputs.size(0), 2048).zero_()
for i in range(2):
if i == 1:
inputs = self.fliphor(inputs)
input_img = usegpu(inputs)
outputs = self.model(input_img)
f = outputs[0].data.cpu()
ff = ff + f
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
features = torch.cat((features, ff), 0)
return features
if __name__ == '__main__':
assert opt.project_name is not None
print(opt)
loader = Data()
if opt.arch == 'mgn_ptl':
model = usegpu(MGN_PTL())
elif opt.arch == 'mgn':
model = usegpu(MGN())
else:
ValueError('Only mgn & mgn_ptl are supported')
loss = Loss()
reid = Main(model, loss, loader)
if opt.mode == 'train':
if not os.path.exists('weights/{}/'.format(opt.project_name)):
os.makedirs('weights/{}/'.format(opt.project_name))
for epoch in range(1, opt.epoch+1):
print('\nepoch', epoch)
reid.train()
if epoch % 50 == 0 or epoch == 10 or epoch == 1:
print('\nstart evaluate')
reid.test()
torch.save(model.state_dict(), ('weights/{}/model_{}.pt'.format(opt.project_name, epoch)))
reid.test()
torch.save(model.state_dict(), ('weights/{}/model_final.pt'.format(opt.project_name)))
if opt.mode == 'evaluate':
print('start evaluate')
model.load_state_dict(torch.load('{}'.format(opt.weight)))
reid.test()