-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
262 lines (237 loc) · 10.9 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import torch.nn as nn
from tqdm import tqdm
from pathlib import Path
from torch.optim.swa_utils import AveragedModel, SWALR
from torch.optim.lr_scheduler import CosineAnnealingLR
class Engine:
def __init__(self, model, optimizer, scheduler, device):
self.model = model.to(device)
self.optimizer = optimizer
self.scheduler = scheduler
self.device = device
self.scaler = torch.cuda.amp.GradScaler()
self.input_columns = ['attention_mask', 'end_positions', 'input_ids', 'start_positions']
def train(self, dataloader, accumulation_steps=1, grad_clip=1):
self.model.train()
final_loss = 0
for i, batch in enumerate(tqdm(dataloader)):
batch = {k: v.to(self.device) for k, v in batch.items() if k in self.input_columns}
with torch.cuda.amp.autocast():
outputs = self.model(**batch)
loss = outputs.loss
loss /= accumulation_steps
nn.utils.clip_grad_norm_(self.model.parameters(), grad_clip)
self.scaler.scale(loss).backward()
if (i+1) % accumulation_steps == 0:
self.scaler.step(self.optimizer)
self.scaler.update()
self.model.zero_grad()
if self.scheduler is not None:
self.scheduler.step()
final_loss += loss.item()
return final_loss / len(dataloader)
def evaluate(self, dataloader):
with torch.no_grad():
self.model.eval()
final_loss = 0
for batch in tqdm(dataloader):
batch = {k: v.to(self.device) for k, v in batch.items()}
outputs = self.model(**batch)
loss = outputs.loss
final_loss += loss.item()
return final_loss / len(dataloader)
def predict(self, dataloader):
with torch.no_grad():
start_logits = []
end_logits = []
self.model.eval()
for batch in tqdm(dataloader):
batch = {k: v.to(self.device) for k, v in batch.items()}
outputs = self.model(**batch)
start_logits.append(outputs.start_logits)
end_logits.append(outputs.end_logits)
start_logits = torch.cat(start_logits, dim=0)
end_logits = torch.cat(end_logits, dim=0)
start_logits = start_logits.cpu().numpy()
end_logits = end_logits.cpu().numpy()
return [start_logits, end_logits]
def train_evaluate(self, train_dataloader, predict_dataloader, data_retriever, eval_steps, best_metric, save_path, metric='mean_jaccard', accumulation_steps=1, grad_clip=1):
eval_steps //= data_retriever.batch_size
self.model.train()
tloss = 0
for i, batch in enumerate(tqdm(train_dataloader)):
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.cuda.amp.autocast():
outputs = self.model(**batch)
loss = outputs.loss
loss /= accumulation_steps
nn.utils.clip_grad_norm_(self.model.parameters(), grad_clip)
self.scaler.scale(loss).backward()
if (i+1) % accumulation_steps == 0:
self.scaler.step(self.optimizer)
self.scaler.update()
self.model.zero_grad()
if self.scheduler is not None:
self.scheduler.step()
tloss += loss.item()
if (i+1) % eval_steps == 0:
raw_predictions = self.predict(predict_dataloader)
score, lang_scores, df = data_retriever.evaluate_jaccard(raw_predictions, return_predictions=True)
nonzero_jaccard_per = len(df[df['jaccard']!=0]) / len(df)
cur_metric = score if metric == 'mean_jaccard' else nonzero_jaccard_per
if cur_metric > best_metric:
best_metric = cur_metric
if save_path is not None:
self.save(save_path)
print(f'batch {i+1}, tloss {tloss / eval_steps}, vscore {score}, nonzero_jaccard_per {nonzero_jaccard_per} best {metric} {best_metric}')
tloss = 0
return best_metric
def save(self, path):
path = Path(path)
path.parents[0].mkdir(parents=True, exist_ok=True)
torch.save(self.model.state_dict(), path)
class CustomModelEngine:
def __init__(self, model, optimizer, scheduler, device):
self.model = model.to(device)
self.optimizer = optimizer
self.scheduler = scheduler
self.device = device
self.scaler = torch.cuda.amp.GradScaler()
def train(self, dataloader, accumulation_steps=1, grad_clip=1):
self.model.train()
final_loss = 0
for i, batch in enumerate(tqdm(dataloader)):
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.cuda.amp.autocast():
outputs = self.model(**batch)
loss = outputs['loss']
loss /= accumulation_steps
nn.utils.clip_grad_norm_(self.model.parameters(), grad_clip)
self.scaler.scale(loss).backward()
if (i+1) % accumulation_steps == 0:
self.scaler.step(self.optimizer)
self.scaler.update()
self.model.zero_grad()
if self.scheduler is not None:
self.scheduler.step()
final_loss += loss.item()
return final_loss / len(dataloader)
def evaluate(self, dataloader):
with torch.no_grad():
self.model.eval()
final_loss = 0
for batch in tqdm(dataloader):
batch = {k: v.to(self.device) for k, v in batch.items()}
outputs = self.model(**batch)
loss = outputs['loss']
final_loss += loss.item()
return final_loss / len(dataloader)
def predict(self, dataloader):
with torch.no_grad():
start_logits = []
end_logits = []
self.model.eval()
for batch in tqdm(dataloader):
batch = {k: v.to(self.device) for k, v in batch.items()}
outputs = self.model(**batch)
start_logits.append(outputs['start_logits'])
end_logits.append(outputs['end_logits'])
start_logits = torch.cat(start_logits, dim=0)
end_logits = torch.cat(end_logits, dim=0)
start_logits = start_logits.cpu().numpy()
end_logits = end_logits.cpu().numpy()
return [start_logits, end_logits]
def save(self, path):
path = Path(path)
path.parents[0].mkdir(parents=True, exist_ok=True)
torch.save(self.model.state_dict(), path)
class SWAEngine:
def __init__(self, model, optimizer, scheduler, device):
self.model = model.to(device)
self.optimizer = optimizer
self.scheduler = scheduler
self.device = device
self.scaler = torch.cuda.amp.GradScaler()
self.swa_model = AveragedModel(model).to(device)
def train(self, dataloader, accumulation_steps=1, grad_clip=1):
self.model.train()
final_loss = 0
for i, batch in enumerate(tqdm(dataloader)):
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.cuda.amp.autocast():
outputs = self.model(**batch)
loss = outputs.loss
loss /= accumulation_steps
nn.utils.clip_grad_norm_(self.model.parameters(), grad_clip)
self.scaler.scale(loss).backward()
if (i+1) % accumulation_steps == 0:
self.scaler.step(self.optimizer)
self.scaler.update()
self.model.zero_grad()
if self.scheduler is not None:
self.scheduler.step()
final_loss += loss.item()
return final_loss / len(dataloader)
def evaluate(self, dataloader):
with torch.no_grad():
self.model.eval()
final_loss = 0
for batch in tqdm(dataloader):
batch = {k: v.to(self.device) for k, v in batch.items()}
outputs = self.model(**batch)
loss = outputs.loss
final_loss += loss.item()
return final_loss / len(dataloader)
def predict(self, dataloader):
with torch.no_grad():
start_logits = []
end_logits = []
self.swa_model.eval()
for batch in tqdm(dataloader):
batch = {k: v.to(self.device) for k, v in batch.items()}
outputs = self.swa_model(**batch)
start_logits.append(outputs.start_logits)
end_logits.append(outputs.end_logits)
start_logits = torch.cat(start_logits, dim=0)
end_logits = torch.cat(end_logits, dim=0)
start_logits = start_logits.cpu().numpy()
end_logits = end_logits.cpu().numpy()
return [start_logits, end_logits]
def train_evaluate(self, train_dataloader, predict_dataloader, data_retriever, eval_steps, best_score, save_path, accumulation_steps=1, grad_clip=1):
eval_steps //= data_retriever.batch_size
self.model.train()
self.swa_model.train()
tloss = 0
for i, batch in enumerate(tqdm(train_dataloader)):
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.cuda.amp.autocast():
outputs = self.model(**batch)
loss = outputs.loss
loss /= accumulation_steps
nn.utils.clip_grad_norm_(self.model.parameters(), grad_clip)
self.scaler.scale(loss).backward()
if (i+1) % accumulation_steps == 0:
self.scaler.step(self.optimizer)
self.scaler.update()
self.model.zero_grad()
if self.scheduler is not None:
self.scheduler.step()
tloss += loss.item()
if (i+1) % eval_steps == 0:
self.swa_model.update_parameters(self.model)
raw_predictions = self.predict(predict_dataloader)
score, lang_scores = data_retriever.evaluate_jaccard(raw_predictions)
if score > best_score:
best_score = score
if save_path is not None:
self.save(save_path)
print(f'batch {i+1}, tloss {tloss / eval_steps}, vscore {score}, best score {best_score}')
tloss = 0
torch.optim.swa_utils.update_bn(train_dataloader, self.swa_model)
return best_score
def save(self, path):
path = Path(path)
path.parents[0].mkdir(parents=True, exist_ok=True)
# torch.save(self.model.state_dict(), path)
torch.save(self.swa_model.state_dict(), path)