基数排序(Radix Sort)基本思想:
将整数按位数切割成不同的数字,然后从低位开始,依次到高位,逐位进行排序,从而达到排序的目的。
基数排序算法可以采用「最低位优先法(Least Significant Digit First)」或者「最高位优先法(Most Significant Digit first)」。最常用的是「最低位优先法」。
下面我们以最低位优先法为例,讲解一下算法步骤。
- 确定排序的最大位数:遍历数组元素,获取数组最大值元素,并取得对应位数。
-
从最低位(个位)开始,到最高位为止,逐位对每一位进行排序:
- 定义一个长度为
$10$ 的桶数组$buckets$ ,每个桶分别代表$0 \sim 9$ 中的$1$ 个数字。 - 按照每个元素当前位上的数字,将元素放入对应数字的桶中。
- 清空原始数组,然后按照桶的顺序依次取出对应元素,重新加入到原始数组中。
- 定义一个长度为
我们以
class Solution:
def radixSort(self, nums: [int]) -> [int]:
# 桶的大小为所有元素的最大位数
size = len(str(max(nums)))
# 从最低位(个位)开始,逐位遍历每一位
for i in range(size):
# 定义长度为 10 的桶数组 buckets,每个桶分别代表 0 ~ 9 中的 1 个数字。
buckets = [[] for _ in range(10)]
# 遍历数组元素,按照每个元素当前位上的数字,将元素放入对应数字的桶中。
for num in nums:
buckets[num // (10 ** i) % 10].append(num)
# 清空原始数组
nums.clear()
# 按照桶的顺序依次取出对应元素,重新加入到原始数组中。
for bucket in buckets:
for num in bucket:
nums.append(num)
# 完成排序,返回结果数组
return nums
def sortArray(self, nums: [int]) -> [int]:
return self.radixSort(nums)
-
时间复杂度:$O(n \times k)$。其中
$n$ 是待排序元素的个数,$k$ 是数字位数。$k$ 的大小取决于数字位的选择(十进制位、二进制位)和待排序元素所属数据类型全集的大小。 - 空间复杂度:$O(n + k)$。
- 排序稳定性:基数排序采用的桶排序是稳定的。基数排序是一种 稳定排序算法。