forked from thu-ml/tianshou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatari_ppo.py
291 lines (270 loc) · 10.3 KB
/
atari_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import argparse
import datetime
import os
import pprint
import numpy as np
import torch
from atari_network import DQN, layer_init, scale_obs
from atari_wrapper import make_atari_env
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import ICMPolicy, PPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import ActorCritic
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
parser.add_argument("--seed", type=int, default=4213)
parser.add_argument("--scale-obs", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--lr", type=float, default=2.5e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--step-per-epoch", type=int, default=100000)
parser.add_argument("--step-per-collect", type=int, default=1000)
parser.add_argument("--repeat-per-collect", type=int, default=4)
parser.add_argument("--batch-size", type=int, default=256)
parser.add_argument("--hidden-size", type=int, default=512)
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--rew-norm", type=int, default=False)
parser.add_argument("--vf-coef", type=float, default=0.25)
parser.add_argument("--ent-coef", type=float, default=0.01)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--lr-decay", type=int, default=True)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--eps-clip", type=float, default=0.1)
parser.add_argument("--dual-clip", type=float, default=None)
parser.add_argument("--value-clip", type=int, default=1)
parser.add_argument("--norm-adv", type=int, default=1)
parser.add_argument("--recompute-adv", type=int, default=0)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument(
"--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu"
)
parser.add_argument("--frames-stack", type=int, default=4)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="atari.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only"
)
parser.add_argument("--save-buffer-name", type=str, default=None)
parser.add_argument(
"--icm-lr-scale",
type=float,
default=0.,
help="use intrinsic curiosity module with this lr scale"
)
parser.add_argument(
"--icm-reward-scale",
type=float,
default=0.01,
help="scaling factor for intrinsic curiosity reward"
)
parser.add_argument(
"--icm-forward-loss-weight",
type=float,
default=0.2,
help="weight for the forward model loss in ICM"
)
return parser.parse_args()
def test_ppo(args=get_args()):
env, train_envs, test_envs = make_atari_env(
args.task,
args.seed,
args.training_num,
args.test_num,
scale=0,
frame_stack=args.frames_stack,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# should be N_FRAMES x H x W
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# define model
net_cls = scale_obs(DQN) if args.scale_obs else DQN
net = net_cls(
*args.state_shape,
args.action_shape,
device=args.device,
features_only=True,
output_dim=args.hidden_size,
layer_init=layer_init,
)
actor = Actor(net, args.action_shape, device=args.device, softmax_output=False)
critic = Critic(net, device=args.device)
optim = torch.optim.Adam(
ActorCritic(actor, critic).parameters(), lr=args.lr, eps=1e-5
)
lr_scheduler = None
if args.lr_decay:
# decay learning rate to 0 linearly
max_update_num = np.ceil(
args.step_per_epoch / args.step_per_collect
) * args.epoch
lr_scheduler = LambdaLR(
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num
)
# define policy
def dist(p):
return torch.distributions.Categorical(logits=p)
policy = PPOPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
max_grad_norm=args.max_grad_norm,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
action_scaling=False,
lr_scheduler=lr_scheduler,
action_space=env.action_space,
eps_clip=args.eps_clip,
value_clip=args.value_clip,
dual_clip=args.dual_clip,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
).to(args.device)
if args.icm_lr_scale > 0:
feature_net = DQN(
*args.state_shape, args.action_shape, args.device, features_only=True
)
action_dim = np.prod(args.action_shape)
feature_dim = feature_net.output_dim
icm_net = IntrinsicCuriosityModule(
feature_net.net,
feature_dim,
action_dim,
hidden_sizes=[args.hidden_size],
device=args.device,
)
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
policy = ICMPolicy(
policy, icm_net, icm_optim, args.icm_lr_scale, args.icm_reward_scale,
args.icm_forward_loss_weight
).to(args.device)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# replay buffer: `save_last_obs` and `stack_num` can be removed together
# when you have enough RAM
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
ignore_obs_next=True,
save_only_last_obs=True,
stack_num=args.frames_stack,
)
# collector
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "ppo_icm" if args.icm_lr_scale > 0 else "ppo"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
if env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
elif "Pong" in args.task:
return mean_rewards >= 20
else:
return False
def save_checkpoint_fn(epoch, env_step, gradient_step):
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
torch.save({"model": policy.state_dict()}, ckpt_path)
return ckpt_path
# watch agent's performance
def watch():
print("Setup test envs ...")
policy.eval()
test_envs.seed(args.seed)
if args.save_buffer_name:
print(f"Generate buffer with size {args.buffer_size}")
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(test_envs),
ignore_obs_next=True,
save_only_last_obs=True,
stack_num=args.frames_stack,
)
collector = Collector(policy, test_envs, buffer, exploration_noise=True)
result = collector.collect(n_step=args.buffer_size)
print(f"Save buffer into {args.save_buffer_name}")
# Unfortunately, pickle will cause oom with 1M buffer size
buffer.save_hdf5(args.save_buffer_name)
else:
print("Testing agent ...")
test_collector.reset()
result = test_collector.collect(
n_episode=args.test_num, render=args.render
)
rew = result["rews"].mean()
print(f"Mean reward (over {result['n/ep']} episodes): {rew}")
if args.watch:
watch()
exit(0)
# test train_collector and start filling replay buffer
train_collector.collect(n_step=args.batch_size * args.training_num)
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
step_per_collect=args.step_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
test_in_train=False,
resume_from_log=args.resume_id is not None,
save_checkpoint_fn=save_checkpoint_fn,
)
pprint.pprint(result)
watch()
if __name__ == "__main__":
test_ppo(get_args())