-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathtrain_predictor.py
220 lines (167 loc) · 9.97 KB
/
train_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import torch
import argparse
from torch import optim
from timm.utils import ModelEma
from torch.utils.data import DataLoader, DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from diffusion_planner.model.diffusion_planner import Diffusion_Planner
from diffusion_planner.utils.train_utils import set_seed, save_model, resume_model
from diffusion_planner.utils.normalizer import ObservationNormalizer, StateNormalizer
from diffusion_planner.utils.lr_schedule import CosineAnnealingWarmUpRestarts
from diffusion_planner.utils.tb_log import TensorBoardLogger as Logger
from diffusion_planner.utils.data_augmentation import StatePerturbation
from diffusion_planner.utils.dataset import DiffusionPlannerData
from diffusion_planner.utils import ddp
from diffusion_planner.train_epoch import train_epoch
def boolean(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args():
# Arguments
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--name', type=str, help='log name (default: "diffusion-planner-training")', default="diffusion-planner-training")
parser.add_argument('--save_dir', type=str, help='save dir for model ckpt', default=".")
# Data
parser.add_argument('--train_set', type=str, help='path to train data', default=None)
parser.add_argument('--train_set_list', type=str, help='data list of train data', default=None)
parser.add_argument('--future_len', type=int, help='number of time point', default=80)
parser.add_argument('--time_len', type=int, help='number of time point', default=21)
parser.add_argument('--agent_state_dim', type=int, help='past state dim for agents', default=11)
parser.add_argument('--agent_num', type=int, help='number of agents', default=32)
parser.add_argument('--static_objects_state_dim', type=int, help='state dim for static objects', default=10)
parser.add_argument('--static_objects_num', type=int, help='number of static objects', default=5)
parser.add_argument('--lane_len', type=int, help='number of lane point', default=20)
parser.add_argument('--lane_state_dim', type=int, help='state dim for lane point', default=12)
parser.add_argument('--lane_num', type=int, help='number of lanes', default=70)
parser.add_argument('--route_len', type=int, help='number of route lane point', default=20)
parser.add_argument('--route_state_dim', type=int, help='state dim for route lane point', default=12)
parser.add_argument('--route_num', type=int, help='number of route lanes', default=25)
# DataLoader parameters
parser.add_argument('--augment_prob', type=float, help='augmentation probability', default=0.5)
parser.add_argument('--normalization_file_path', default='normalization.json', help='filepath of normalizaiton.json', type=str)
parser.add_argument('--use_data_augment', default=True, type=boolean)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem', help='')
parser.set_defaults(pin_mem=True)
# Training
parser.add_argument('--seed', type=int, help='fix random seed', default=3407)
parser.add_argument('--train_epochs', type=int, help='epochs of training', default=500)
parser.add_argument('--save_utd', type=int, help='save frequency', default=20)
parser.add_argument('--batch_size', type=int, help='batch size (default: 2048)', default=2048)
parser.add_argument('--learning_rate', type=float, help='learning rate (default: 5e-4)', default=5e-4)
parser.add_argument('--warm_up_epoch', type=int, help='number of warm up', default=5)
parser.add_argument('--encoder_drop_path_rate', type=float, help='encoder drop out rate', default=0.1)
parser.add_argument('--decoder_drop_path_rate', type=float, help='decoder drop out rate', default=0.1)
parser.add_argument('--alpha_planning_loss', type=float, help='coefficient of planning loss (default: 1.0)', default=1.0)
parser.add_argument('--device', type=str, help='run on which device (default: cuda)', default='cuda')
parser.add_argument('--use_ema', default=True, type=boolean)
# Model
parser.add_argument('--encoder_depth', type=int, help='number of encoding layers', default=3)
parser.add_argument('--decoder_depth', type=int, help='number of decoding layers', default=3)
parser.add_argument('--num_heads', type=int, help='number of multi-head', default=6)
parser.add_argument('--hidden_dim', type=int, help='hidden dimension', default=192)
parser.add_argument('--diffusion_model_type', type=str, help='type of diffusion model [x_start, score]', choices=['score', 'x_start'], default='x_start')
# decoder
parser.add_argument('--predicted_neighbor_num', type=int, help='number of neighbor agents to predict', default=10)
parser.add_argument('--resume_model_path', type=str, help='path to resume model', default=None)
parser.add_argument('--use_wandb', default=False, type=boolean)
parser.add_argument('--notes', default='', type=str)
# distributed training parameters
parser.add_argument('--ddp', default=True, type=boolean, help='use ddp or not')
parser.add_argument('--port', default='22323', type=str, help='port')
args = parser.parse_args()
args.state_normalizer = StateNormalizer.from_json(args)
args.observation_normalizer = ObservationNormalizer.from_json(args)
return args
def model_training(args):
# init ddp
global_rank, rank, _ = ddp.ddp_setup_universal(True, args)
if global_rank == 0:
# Logging
print("------------- {} -------------".format(args.name))
print("Batch size: {}".format(args.batch_size))
print("Learning rate: {}".format(args.learning_rate))
print("Use device: {}".format(args.device))
if args.resume_model_path is not None:
save_path = args.resume_model_path
else:
from datetime import datetime
time = datetime.now()
time = time.strftime("%Y-%m-%d-%H:%M:%S")
save_path = f"{args.save_dir}/training_log/{args.name}/{time}/"
os.makedirs(save_path, exist_ok=True)
# Save args
args_dict = vars(args)
args_dict = {k: v if not isinstance(v, (StateNormalizer, ObservationNormalizer)) else v.to_dict() for k, v in args_dict.items() }
from mmengine.fileio import dump
dump(args_dict, os.path.join(save_path, 'args.json'), file_format='json', indent=4)
else:
save_path = None
# set seed
set_seed(args.seed + global_rank)
# training parameters
train_epochs = args.train_epochs
batch_size = args.batch_size
# set up data loaders
aug = StatePerturbation(augment_prob=args.augment_prob, device=args.device) if args.use_data_augment else None
train_set = DiffusionPlannerData(args.train_set, args.train_set_list, args.agent_num, args.predicted_neighbor_num, args.future_len)
train_sampler = DistributedSampler(train_set, num_replicas=ddp.get_world_size(), rank=global_rank, shuffle=True)
train_loader = DataLoader(train_set, sampler=train_sampler, batch_size=batch_size//ddp.get_world_size(), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True)
if global_rank == 0:
print("Dataset Prepared: {} train data\n".format(len(train_set)))
if args.ddp:
torch.distributed.barrier()
# set up model
diffusion_planner = Diffusion_Planner(args)
diffusion_planner = diffusion_planner.to(rank if args.device == 'cuda' else args.device)
if args.ddp:
diffusion_planner = DDP(diffusion_planner, device_ids=[rank])
if args.use_ema:
model_ema = ModelEma(
diffusion_planner,
decay=0.999,
device=args.device,
)
if global_rank == 0:
print("Model Params: {}".format(sum(p.numel() for p in ddp.get_model(diffusion_planner, args.ddp).parameters())))
# optimizer
params = [{'params': ddp.get_model(diffusion_planner, args.ddp).parameters(), 'lr': args.learning_rate}]
optimizer = optim.AdamW(params)
scheduler = CosineAnnealingWarmUpRestarts(optimizer, train_epochs, args.warm_up_epoch)
if args.resume_model_path is not None:
print(f"Model loaded from {args.resume_model_path}")
diffusion_planner, optimizer, scheduler, init_epoch, wandb_id, model_ema = resume_model(args.resume_model_path, diffusion_planner, optimizer, scheduler, model_ema, args.device)
else:
init_epoch = 0
wandb_id = None
# logger
wandb_logger = Logger(args.name, args.notes, args, wandb_resume_id=wandb_id, save_path=save_path, rank=global_rank)
if args.ddp:
torch.distributed.barrier()
# begin training
for epoch in range(init_epoch, train_epochs):
if global_rank == 0:
print(f"Epoch {epoch+1}/{train_epochs}")
train_loss, train_total_loss = train_epoch(train_loader, diffusion_planner, optimizer, args, model_ema, aug)
if global_rank == 0:
lr_dict = {'lr': optimizer.param_groups[0]['lr']}
wandb_logger.log_metrics({f"train_loss/{k}": v for k, v in train_loss.items()}, step=epoch+1)
wandb_logger.log_metrics({f"lr/{k}": v for k, v in lr_dict.items()}, step=epoch+1)
if (epoch+1) % args.save_utd == 0:
# save model at the end of epoch
save_model(diffusion_planner, optimizer, scheduler, save_path, epoch, train_total_loss, wandb_logger.id, model_ema.ema)
print(f"Model saved in {save_path}\n")
scheduler.step()
train_sampler.set_epoch(epoch + 1)
if __name__ == "__main__":
args = get_args()
# Run
model_training(args)