forked from codeplaysoftware/cutlass-fork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tiled_copy_sycl.cpp
251 lines (205 loc) · 10 KB
/
tiled_copy_sycl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* Copyright (c) 2024 - 2024 Codeplay Software Ltd. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <sycl/sycl.hpp>
#include <syclcompat.hpp>
#include <cute/tensor.hpp>
#include "cutlass/util/print_error.hpp"
// This is a simple tutorial showing several ways to partition a tensor into tiles then
// perform efficient, coalesced copies. This example also shows how to vectorize accesses
// which may be a useful optimization or required for certain workloads.
//
// `copy_kernel()` and `copy_kernel_vectorized()` each assume a pair of tensors with
// dimensions (m, n) have been partitioned via `tiled_divide()`.
//
// The result are a part of compatible tensors with dimensions ((M, N), m', n'), where
// (M, N) denotes a statically sized tile, and m' and n' denote the number of such tiles
// within the tensor.
//
// Each statically sized tile is mapped to a CUDA threadblock which performs efficient
// loads and stores to Global Memory.
//
// `copy_kernel()` uses `cute::local_partition()` to partition the tensor and map
// the result to threads using a striped indexing scheme. Threads themselve are arranged
// in a (ThreadShape_M, ThreadShape_N) arrangement which is replicated over the tile.
//
// `copy_kernel_vectorized()` uses `cute::make_tiled_copy()` to perform a similar
// partitioning using `cute::Copy_Atom` to perform vectorization. The actual vector
// size is defined by `ThreadShape`.
//
// This example assumes the overall tensor shape is divisible by the tile size and
// does not perform predication.
/// Simple copy kernel.
//
// Uses local_partition() to partition a tile among threads arranged as (THR_M, THR_N).
template <class TensorS, class TensorD, class ThreadLayout>
void copy_kernel(TensorS S, TensorD D, ThreadLayout)
{
using namespace cute;
// Slice the tiled tensors
Tensor tile_S = S(make_coord(_,_), syclcompat::work_group_id::x(),
syclcompat::work_group_id::y()); // (BlockShape_M, BlockShape_N)
Tensor tile_D = D(make_coord(_,_), syclcompat::work_group_id::x(),
syclcompat::work_group_id::y()); // (BlockShape_M, BlockShape_N)
// Construct a partitioning of the tile among threads with the given thread arrangement.
// Concept: Tensor ThrLayout ThrIndex
Tensor thr_tile_S = local_partition(tile_S, ThreadLayout{}, syclcompat::local_id::x()); // (ThrValM, ThrValN)
Tensor thr_tile_D = local_partition(tile_D, ThreadLayout{}, syclcompat::local_id::x()); // (ThrValM, ThrValN)
// Construct a register-backed Tensor with the same shape as each thread's partition
// Use make_tensor to try to match the layout of thr_tile_S
Tensor fragment = make_tensor_like(thr_tile_S); // (ThrValM, ThrValN)
// Copy from GMEM to RMEM and from RMEM to GMEM
copy(thr_tile_S, fragment);
copy(fragment, thr_tile_D);
}
/// Vectorized copy kernel.
///
/// Uses `make_tiled_copy()` to perform a copy using vector instructions. This operation
/// has the precondition that pointers are aligned to the vector size.
///
template <class TensorS, class TensorD, class ThreadLayout, class VecLayout>
void copy_kernel_vectorized(TensorS S, TensorD D, ThreadLayout, VecLayout)
{
using namespace cute;
using Element = typename TensorS::value_type;
// Slice the tensors to obtain a view into each tile.
Tensor tile_S = S(make_coord(_, _), syclcompat::work_group_id::x(),
syclcompat::work_group_id::y()); // (BlockShape_M, BlockShape_N)
Tensor tile_D = D(make_coord(_, _), syclcompat::work_group_id::x(),
syclcompat::work_group_id::y()); // (BlockShape_M, BlockShape_N)
// Define `AccessType` which controls the size of the actual memory access.
using AccessType = cutlass::AlignedArray<Element, size(VecLayout{})>;
// A copy atom corresponds to one hardware memory access.
using Atom = Copy_Atom<UniversalCopy<AccessType>, Element>;
// Construct tiled copy, a tiling of copy atoms.
//
// Note, this assumes the vector and thread layouts are aligned with contigous data
// in GMEM. Alternative thread layouts are possible but may result in uncoalesced
// reads. Alternative vector layouts are also possible, though incompatible layouts
// will result in compile time errors.
auto tiled_copy =
make_tiled_copy(
Atom{}, // access size
ThreadLayout{}, // thread layout
VecLayout{}); // vector layout (e.g. 4x1)
// Construct a Tensor corresponding to each thread's slice.
auto thr_copy = tiled_copy.get_thread_slice(syclcompat::local_id::x());
Tensor thr_tile_S = thr_copy.partition_S(tile_S); // (CopyOp, CopyM, CopyN)
Tensor thr_tile_D = thr_copy.partition_D(tile_D); // (CopyOp, CopyM, CopyN)
// Construct a register-backed Tensor with the same shape as each thread's partition
// Use make_fragment because the first mode is the instruction-local mode
Tensor fragment = make_fragment_like(thr_tile_D); // (CopyOp, CopyM, CopyN)
// Copy from GMEM to RMEM and from RMEM to GMEM
copy(tiled_copy, thr_tile_S, fragment);
copy(tiled_copy, fragment, thr_tile_D);
}
/// Main function
int main(int argc, char** argv)
{
//
// Given a 2D shape, perform an efficient copy
//
using namespace cute;
using Element = float;
// Define a tensor shape with dynamic extents (m, n)
auto tensor_shape = make_shape(256, 512);
//
// Allocate and initialize
//
std::vector<Element> h_S(size(tensor_shape));
std::vector<Element> h_D(size(tensor_shape));
auto d_S = syclcompat::malloc<Element>(size(tensor_shape));
auto d_D = syclcompat::malloc<Element>(size(tensor_shape));
for (size_t i = 0; i < h_S.size(); ++i) {
h_S[i] = static_cast<Element>(i);
}
syclcompat::memcpy<Element>(d_S, h_S.data(), size(tensor_shape));
syclcompat::memcpy<Element>(d_D, h_D.data(), size(tensor_shape));
//
// Make tensors
//
Tensor tensor_S = make_tensor(d_S, make_layout(tensor_shape));
Tensor tensor_D = make_tensor(d_D, make_layout(tensor_shape));
//
// Tile tensors
//
// Define a statically sized block (M, N).
// Note, by convention, capital letters are used to represent static modes.
auto block_shape = make_shape(Int<128>{}, Int<64>{});
if ((size<0>(tensor_shape) % size<0>(block_shape)) || (size<1>(tensor_shape) % size<1>(block_shape))) {
std::cerr << "The tensor shape must be divisible by the block shape." << std::endl;
return -1;
}
// Equivalent check to the above
if (not evenly_divides(tensor_shape, block_shape)) {
std::cerr << "Expected the block_shape to evenly divide the tensor shape." << std::endl;
return -1;
}
// Tile the tensor (m, n) ==> ((M, N), m', n') where (M, N) is the static tile
// shape, and modes (m', n') correspond to the number of tiles.
//
// These will be used to determine the CUDA kernel grid dimensions.
Tensor tiled_tensor_S = tiled_divide(tensor_S, block_shape); // ((M, N), m', n')
Tensor tiled_tensor_D = tiled_divide(tensor_D, block_shape); // ((M, N), m', n')
// Thread arrangement
Layout thr_layout = make_layout(make_shape(Int<32>{}, Int<8>{}));
// Vector dimensions
Layout vec_layout = make_layout(make_shape(Int<4>{}, Int<1>{}));
//
// Determine grid and block dimensions
//
auto gridDim = syclcompat::dim3(size<1>(tiled_tensor_D), size<2>(tiled_tensor_D)); // Grid shape corresponds to modes m' and n'
auto blockDim = syclcompat::dim3(size(thr_layout));
//
// Launch the kernel
//
syclcompat::launch<copy_kernel_vectorized<decltype(tiled_tensor_S), decltype(tiled_tensor_D),
decltype(thr_layout), decltype(vec_layout)>>(
gridDim, blockDim, tiled_tensor_S, tiled_tensor_D, thr_layout, vec_layout);
syclcompat::wait_and_throw();
//
// Verify
//
syclcompat::memcpy<Element>(h_D.data(), d_D, size(tensor_shape));
int32_t errors = 0;
int32_t const kErrorLimit = 10;
for (size_t i = 0; i < h_D.size(); ++i) {
if (h_S[i] != h_D[i]) {
std::cerr << "Error. S[" << i << "]: " << h_S[i] << ", D[" << i << "]: " << h_D[i] << std::endl;
if (++errors >= kErrorLimit) {
std::cerr << "Aborting on " << kErrorLimit << "nth error." << std::endl;
return -1;
}
}
}
std::cout << "Success." << std::endl;
return 0;
}