-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathZPC.m
361 lines (300 loc) · 9.83 KB
/
ZPC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
% ZPC: run ZPC with model and without the model
% i.e., run
% 1-Robust data driven Predictive control scheme (ZPC)
% 2- Same ZPC while knowing the model (RMPC-zono)
%
% Inputs:
% none
%
% Outputs:
% saved workspace
%
% Example:
%
% See also: ---
% Author: Amr Alanwar, Yvonne Stürz
% Written: 25-March-2021
% Last update: ---
% Last revision:---
%------------- BEGIN CODE --------------
rand('seed',4500);
clear all
close all
% dimension of x
dim_x = 5;
% System in cont time
A = [-1 -4 0 0 0; 4 -1 0 0 0; 0 0 -3 1 0; 0 0 -1 -3 0; 0 0 0 0 -2];
B_ss = ones(5,1);
C = [1,0,0,0,0];
D = 0;
% define continuous time system
sys_c = ss(A,B_ss,C,D);
% convert to discrete system
samplingtime = 0.05;
sys_d = c2d(sys_c,samplingtime);
%number of trajectories
initpoints =100;
%number of steps for each trajectory
steps =5;
%Total number of samples
totalsamples = initpoints*steps;
%% initial set and input
%reference input
uref = 8;
%reference output
ref = inv(eye(5)-sys_d.A)*sys_d.B*uref;
%output constraint
y_lb = [-10;2;-10;-10;-10];
y_ub = [10;10;10;10;10];
intc = interval(y_lb,y_ub);
%initial point
y0 = [-2;4;3;-2.5;5.5];
%initial zonotope tot generate data
X0 = zonotope([y0,25*diag(ones(dim_x,1))]);
%input zonotope
U = zonotope([uref-1,20-1]);
%noise zontope W (modeling noise)
%less noise
wfac=0.01;
%more noise
%wfac=0.1;
W = zonotope([zeros(dim_x,1),wfac*ones(dim_x,1)]);
for i=1:size(W.generators,2)
vec=W.Z(:,i+1);
GW{i}= [ vec,zeros(dim_x,totalsamples-1)];
for j=1:totalsamples-1
GW{j+i}= [GW{i+j-1}(:,2:end) GW{i+j-1}(:,1)];
end
end
% matrix zonotpe of noise w (M_w)
Wmatzono= matZonotope(zeros(dim_x,totalsamples),GW);
%measurement noise
%less measurement noise
vfac = 0.002;
%more measurement noise
%vfac = 0.02;
V = zonotope([zeros(dim_x,1),vfac*ones(dim_x,1)]);
CV = zeros(dim_x,totalsamples);
for i=1:size(V.generators,2)
vec=V.Z(:,i+1);
GV{i}= [ vec,zeros(dim_x,totalsamples-1)];
for j=1:totalsamples-1
GV{j+i}= [GV{i+j-1}(:,2:end) GV{i+j-1}(:,1)];
end
end
% matrix zonotpe of noise v (M_v)
Vmatzono= matZonotope(CV,GV);
AV = sys_d.A*V;
% matrix zonotpe of Av (M_Av)
VAmatzono = sys_d.A*Vmatzono;
% randomly choose constant inputs for each step / sampling time
for i=1:totalsamples
u(i) = randPoint(U);
end
%generate data from different trajectories with noise
x0 = X0.center;
x(:,1) = x0;
index=1;
for j=1:dim_x:initpoints*dim_x
x(j:j+dim_x-1,1) = randPoint(X0);
x_v(j:j+dim_x-1,1) = x(j:j+dim_x-1,1) + randPoint(V);
for i=1:steps
utraj(j,i) = u(index);
x(j:j+dim_x-1,i+1) = sys_d.A*x(j:j+dim_x-1,i) + sys_d.B*u(index) + randPoint(W);
x_v(j:j+dim_x-1,i+1) = x(j:j+dim_x-1,i+1) + randPoint(V);
index=index+1;
end
end
%prepeare Y_+ Y_-
index_0 =1;
index_1 =1;
for j=1:dim_x:initpoints*dim_x
for i=2:steps+1
x_meas_vec_1_v(:,index_1) = x_v(j:j+dim_x-1,i);
x_meas_vec_1(:,index_1) = x(j:j+dim_x-1,i);
index_1 = index_1 +1;
end
for i=1:steps
u_mean_vec_0(:,index_0) = utraj(j,i);
x_meas_vec_0(:,index_0) = x(j:j+dim_x-1,i);
x_meas_vec_0_v(:,index_0) = x_v(j:j+dim_x-1,i);
index_0 = index_0 +1;
end
end
% U_data is U_-, Y_0T is Y_- , Y_1T is Y_+
U_data = u_mean_vec_0(:,1:totalsamples); %same as u
Y_0T = x_meas_vec_0_v(:,1:totalsamples);
Y_1T = x_meas_vec_1_v(:,1:totalsamples);
% plot simulated trajectory
figure;
subplot(1,2,1); hold on; box on; plot(x(1,:),x(2,:),'b'); xlabel('x_1'); ylabel('x_2');
subplot(1,2,2); hold on; box on; plot(x(3,:),x(4,:),'b'); xlabel('x_3'); ylabel('x_4');
close;
%prepare M_Sigma which is a set of [A B]
AB = (Y_1T + -1* Vmatzono + -1*Wmatzono+VAmatzono)*pinv([Y_0T;U_data]);
%double check if the true A B is part of M_Sigma
intAB11 = intervalMatrix(AB);
intAB1 = intAB11.int;
intAB1.sup >= [sys_d.A,sys_d.B]
intAB1.inf <= [sys_d.A,sys_d.B]
% check the rank of the data
rank = rank([Y_0T;U_data])
%% Compute ZPC problem
%Horizon N for ZPC
N = 2;
%define output cost matrix
Qy = 1e3*eye(5);
%control cost matrix
Qu = 0.001*eye(1);
execTimeZPC=[];
execTimeRMPC=[];
% ZPC number of time steps
maxsteps = 80;
% chosen time step for plotting
chosedtimestep = 10;
for timesteps = 1:maxsteps
if timesteps == 1
% set the initial output to y0
y_t(:,timesteps) = y0;
y_t_model(:,timesteps) = y0;
YPred(:,1) = y0;
end
% sdpvar variables
u = sdpvar(1*ones(1,N),ones(1,N));
y = sdpvar(5*ones(1,N+1),ones(1,N+1));
alpha_u = sdpvar(1,N);
sinf = sdpvar(5*ones(1,N+1),ones(1,N+1));
ssup = sdpvar(5*ones(1,N+1),ones(1,N+1));
R={};
R{1} = zonotope([y_t(:,timesteps)]);
%set the first constraint as y_t = current y
Constraints = [y_t(:,timesteps) == y{1}];%,...
for i = 1:N
%compute the reachable set for ZPC
card_cen = [R{i}.center;u{i}];
genleni = size(R{i}.generators,2);
card_zono = zonotope([card_cen,[R{i}.generators;zeros(1,genleni)]]);
ABcard = intervalMatrix(AB)* card_zono;
R{i+1} = zonotope([ABcard.center,[ABcard.generators,W.generators,V.generators,AV.generators]]);%AB * card_zono + W_sdp;
%convert R to interval
%extract center
c = R{i+1}.Z(:,1);
%determine left and right limit of the reahable set (convert to
%interval)
delta = sum(abs(R{i+1}.Z),2) - abs(c);
leftLimit{i} = c - delta;
rightLimit{i} = c + delta;
%specify the constraints
Constraints = [Constraints,...
u{i} == U.center + alpha_u(i) * U.generators,...
y{i+1} - sinf{i} == leftLimit{i},...
y{i+1} + ssup{i} == rightLimit{i},...
y{i+1} - sinf{i} >= intc.inf,...
y{i+1} + ssup{i} <= intc.sup,...
sinf{i} >= zeros(5,1),...
ssup{i} >= zeros(5,1),...
alpha_u(i) <= 1 , ...
alpha_u(i) >= -1, ...
];
end
% chose the cost of ZPC
Cost=0;
for i=1:N
Cost = Cost + (y{i+1}-ref)'*Qy*(y{i+1}-ref)+ (u{i}-uref)'*Qu*(u{i}-uref);
end
%solve ZPC
options = sdpsettings('verbose',0,'solver','mosek');
tic
Problem = optimize(Constraints,Cost,options)
execTimeZPC=[execTimeZPC,toc];
Objective = double(Cost);
uPred(timesteps) = double(u{1})
YPred(:,timesteps+1) = double(y{2});
%%
%% save for plotting
Rplotall{timesteps}= interval(zonotope([ double(R{2}.center), double(R{2}.generators)]));
%% ploting
if chosedtimestep == timesteps
for i =1:N+1
RoverN{i}= zonotope([ double(R{i}.center), double(R{i}.generators)]) ;
RoverN_int{i} = interval(RoverN{i});
yoverN{i} =double(y{i});
if i<N+1
uoverN{i} =double(u{i});
end
end
end
%% ZPC given the model (RMPC-zono)
% Control
alpha_u = sdpvar(1,N);
sinf = sdpvar(5*ones(1,N+1),ones(1,N+1));
ssup = sdpvar(5*ones(1,N+1),ones(1,N+1));
R={};
R{1} = zonotope([y_t_model(:,timesteps)]);
u_model = sdpvar(1*ones(1,N),ones(1,N));
y_model = sdpvar(5*ones(1,N+1),ones(1,N+1));
Constraints = [y_t_model(:,timesteps) == y_model{1}];
for i = 1:N
%card_cen = [y{i};u_model{i}];
card_cen = [R{i}.center;u_model{i}];
genleni = size(R{i}.generators,2);
card_zono = zonotope([card_cen,[R{i}.generators;zeros(1,genleni)]]);
% give it true A B
ABcard = [sys_d.A , sys_d.B]* card_zono;
R{i+1} = zonotope([ABcard.center,[ABcard.generators,W.generators,V.generators,AV.generators]]);%AB * card_zono + W_sdp;
%same as before convert R to interval
%extract center
c = R{i+1}.Z(:,1);
%determine left and right limit
delta = sum(abs(R{i+1}.Z),2) - abs(c);
leftLimit{i} = c - delta;
rightLimit{i} = c + delta;
Constraints = [Constraints,...
u_model{i} == U.center + alpha_u(i) * U.generators,...
y_model{i+1} - sinf{i} == leftLimit{i},...
y_model{i+1} + ssup{i} == rightLimit{i},...
y_model{i+1} - sinf{i} >= intc.inf,...
y_model{i+1} + ssup{i} <= intc.sup,...
sinf{i} >= zeros(5,1),...
ssup{i} >= zeros(5,1),...
alpha_u(i) <= 1 , ...
alpha_u(i) >= -1, ...
];
end
Cost_model=0;
for i=1:N
Cost_model = Cost_model + (y_model{i+1}-ref)'*Qy*(y_model{i+1}-ref)+ (u_model{i}-uref)'*Qu*(u_model{i}-uref);
end
options = sdpsettings('verbose',0,'solver','mosek');
tic
Problem = optimize(Constraints,Cost_model,options)
execTimeRMPC=[execTimeRMPC,toc];
Objective = double(Cost_model);
uPred_model(timesteps) = double(u_model{1});
YPred_model(:,timesteps+1) = double(y_model{2});
% apply the optimal control input to the plant
w_point = randPoint(W);
v_point = randPoint(V);
y_t(:,timesteps+1) = sys_d.A * y_t(:,timesteps) + sys_d.B * uPred(timesteps) + w_point +v_point - sys_d.A *v_point;
y_t_model(:,timesteps+1) = sys_d.A * y_t_model(:,timesteps) + sys_d.B * uPred_model(timesteps) + w_point +v_point - sys_d.A *v_point;
yt2ref(timesteps)= norm(y_t(:,timesteps)-ref,2)
yt2ref_model(timesteps)= norm(y_t_model(:,timesteps)-ref,2)
halt = 1;
end
Cost_model=0;
for i=1:timesteps
Cost_model_vec(i) = (y_t_model(:,i+1)-ref)'*Qy*(y_t_model(:,i+1)-ref)+ (uPred_model(:,i)-uref)'*Qu*(uPred_model(:,i)-uref);
Cost_model = Cost_model + Cost_model_vec(i);
end
Cost=0;
for i=1:timesteps
Cost_vec(i) = (y_t(:,i+1)-ref)'*Qy*(y_t(:,i+1)-ref)+ (uPred(:,i)-uref)'*Qu*(uPred(:,i)-uref);
Cost = Cost + Cost_vec(i);
end
meanZPCtime= mean(execTimeZPC)
stdZPCtime= std(execTimeZPC)
meanRMPCtime= mean(execTimeRMPC)
stdRMPCtime= std(execTimeRMPC)
%save the workspace
save('workspaces\ZPC');
%next run plotPolyZono for plotting