-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_cast_concat.py
45 lines (35 loc) · 1.27 KB
/
my_cast_concat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import cv2
import depthai as dai
from pathlib import Path
p = dai.Pipeline()
left = p.create(dai.node.MonoCamera)
right = p.create(dai.node.MonoCamera)
manipLeft = p.create(dai.node.ImageManip)
manipRight = p.create(dai.node.ImageManip)
nn = p.create(dai.node.NeuralNetwork)
cast = p.create(dai.node.Cast)
castXout = p.create(dai.node.XLinkOut)
left.setCamera("left")
left.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
right.setCamera("right")
right.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
nnBlobPath = "concat_openvino_2022.1_6shave.blob"
nn.setBlobPath(nnBlobPath)
nn.setNumInferenceThreads(2)
castXout.setStreamName("cast")
cast.setOutputFrameType(dai.ImgFrame.Type.BGR888p)
# Linking
left.out.link(nn.inputs['img1'])
right.out.link(nn.inputs['img2'])
nn.out.link(cast.input)
cast.output.link(castXout.input)
# Pipeline is defined, now we can connect to the device
with dai.Device(p) as device:
qCast = device.getOutputQueue(name="cast", maxSize=4, blocking=False)
while True:
inCast = qCast.get()
assert isinstance(inCast, dai.ImgFrame)
cv2.imshow("Concated frames", inCast.getCvFrame())
if cv2.waitKey(1) == ord('q'):
break