-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdownsampling_fusion.py
60 lines (44 loc) · 1.84 KB
/
downsampling_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import numpy as np
from sklearn import metrics
from sklearn.metrics import auc, precision_recall_curve
def aucs(l, s):
fpr, tpr, thresholds = metrics.roc_curve(l, s, pos_label=1)
AUC = auc(fpr, tpr)
precision, recall, thresholds = precision_recall_curve(l, s)
auc_precision_recall = auc(recall, precision)
return AUC, auc_precision_recall
aucs(
np.load(os.path.join('0905', 'l_front_d.npy')),
np.load(os.path.join('0905', 's_front_d.npy')))
aucs(
np.load(os.path.join('0905', 'l_front_ir.npy')),
np.load(os.path.join('0905', 's_front_ir.npy')))
aucs(
np.load(os.path.join('0905', 'l_front_ir.npy')),
np.mean((np.load(os.path.join('0905', 's_front_ir.npy')),
np.load(os.path.join('0905', 's_front_d.npy'))), axis=0))
aucs(
np.load(os.path.join('0905', 'l_top_d.npy')),
np.load(os.path.join('0905', 's_top_d.npy')))
aucs(
np.load(os.path.join('0905', 'l_top_ir.npy')),
np.load(os.path.join('0905', 's_top_ir.npy')))
aucs(
np.load(os.path.join('0905', 'l_top_ir.npy')),
np.mean((np.load(os.path.join('0905', 's_top_ir.npy')),
np.load(os.path.join('0905', 's_top_d.npy'))), axis=0))
aucs(
np.load(os.path.join('0905', 'l_top_ir.npy')),
np.mean((np.load(os.path.join('0905', 's_front_d.npy')),
np.load(os.path.join('0905', 's_top_d.npy'))), axis=0))
aucs(
np.load(os.path.join('0905', 'l_top_ir.npy')),
np.mean((np.load(os.path.join('0905', 's_front_ir.npy')),
np.load(os.path.join('0905', 's_top_ir.npy'))), axis=0))
aucs(
np.load(os.path.join('0905', 'l_top_ir.npy')),
np.mean((np.load(os.path.join('0905', 's_front_ir.npy')),
np.load(os.path.join('0905', 's_top_ir.npy')),
np.load(os.path.join('0905', 's_front_d.npy')),
np.load(os.path.join('0905', 's_top_d.npy'))), axis=0))