-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRL.py
301 lines (244 loc) · 13 KB
/
RL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# -*- coding: utf-8 -*-
from __future__ import division
import random
import numpy as np
from copy import deepcopy
from Networks import RC_CNN
from utils import *
from pretrain import pretrain_policy_CNN
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torch.utils.data as Data
# if gpu is to be used
use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor
class Denoiser(object):
def __init__(self, args, embeddings, inputs, pos_data, neg_data):
super(Denoiser, self).__init__()
for k, v in vars(args).items(): setattr(self, k, v)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
#random.seed(args.seed)
#np.random.seed(args.seed)
torch.backends.cudnn.deterministic=True
self.args = args
self.embeddings = embeddings
self.inputs = inputs
self.pos_data = pos_data
self.neg_data = neg_data
self.pos_size = len(self.pos_data)
if self.pos_size < 10000:
self.neg_data = neg_data[:100000]
else:
self.neg_data = neg_data
self.neg_size = min(10*self.pos_size, len(self.neg_data))
#self.neg_size = max(10*self.pos_size, 30000)
rv_initial = torch.zeros(1,100)
self.rv_initial = Variable(rv_initial.type(FloatTensor))
self.split_pos_data()
self.split_neg_data()
pretrain_data_size = self.pos_size + len(self.pretrain_neg)
self.pretrain_batch_size = min(int(pretrain_data_size/100)+1, 1500)
print '\n## PRETRAINING ##'
self.Policy_model = pretrain_policy_CNN(self.pos_data, self.pretrain_neg, self.inputs, \
self.embeddings, self.args, self.rv_initial, self.pretrain_batch_size)
for conv in self.Policy_model.convs1:
conv.weight.requires_grad = False
Policy_parameters = filter(lambda p: p.requires_grad, self.Policy_model.parameters())
self.Policy_optimizer = optim.RMSprop(Policy_parameters, lr=self.learning_rate)
self.train_fix_remove, self.test_fix_remove = None, None
self.alpha, self.F1_max, self.epoch_best = 2.0, 0.0, 0
self.actions_best = list()
self.Policy_best = deepcopy(self.Policy_model)
self.rv_best = deepcopy(self.rv_initial)
def split_pos_data(self):
used_pos = self.pos_data if len(self.pos_data) < 10000 else random.sample(self.pos_data, 7800)
self.train_pos, self.test_pos = split_data(used_pos)
self.train_size = len(self.train_pos+self.test_pos)
print "For RL training, train positive: %d, test positive: %d" % (len(self.train_pos), len(self.test_pos))
def split_neg_data(self):
self.used_neg = random.sample(self.neg_data, self.neg_size)
train_neg_, test_neg_ = split_data(self.used_neg)
self.train_neg = random.sample(train_neg_, 2*len(self.train_pos))
self.test_neg = random.sample(test_neg_, 2*len(self.test_pos))
print "For RL training, train negative: %d, test negative: %d" % (len(self.train_neg), len(self.test_neg))
self.pretrain_neg = list(set(self.used_neg) - set(self.train_neg) - set(self.test_neg))
print "For RL training, pretraining negative: %d" % (len(self.pretrain_neg))
def select_sentences(self, model, x, rv):
trainloader = generate_trainloader(self.inputs, x, [1]*len(x), 1000, shuf=False)
actions = list()
for i, (x_, _) in enumerate(trainloader, 0):
_, _, _, actions_ = self.select_action(model, x_, rv)
actions += actions_
x, actions = np.array(x), np.array(actions)
#print x.shape, actions.shape
assert x.shape == actions.shape
sents_retain = list(x[np.where(actions == 1)[0]])
sents_remove = list(x[np.where(actions == 0)[0]])
return sents_remove, sents_retain
def select_action(self, model, x, rv):
model.eval()
rv_matrix = rv.repeat(x.size(0), 1)
logits, sent_vecs = calculate_logits(model, x, self.max_sent, rv_matrix=rv_matrix)
probs = F.softmax(logits, dim=1).view(x.size(0), -1)
probs = probs.data.type(torch.FloatTensor).numpy()
remove_probs = probs[:,0]
# Actions sampled by probs
actions_prob = list()
for prob in probs:
if abs(prob[0]-prob[1])<0.1:
actions_prob.append(int(np.random.choice(np.arange(2), p=prob)))
else:
actions_prob.append(int(np.argmax(prob)))
# Actual actions
actions = list(np.argmax(probs, axis=1))
remove_idx = np.where(np.array(actions_prob) == 0)[0]
if len(remove_idx) == 0:
return actions_prob, list(remove_probs), torch.zeros(1,100).type(FloatTensor), actions
else:
return actions_prob, list(remove_probs), torch.mean(sent_vecs.data[remove_idx], 0, True), actions
def retrain_relation_classifier(self, actions):
torch.manual_seed(self.seed)
torch.cuda.manual_seed_all(self.seed)
RC_model = RC_CNN(self.embeddings, self.args, emb_change=False, conv_change=False)
RC_model = RC_model.cuda() if use_cuda else RC_model
para_dict = torch.load('./models/Policy_pretrain.pkl')
layers = ['embed.weight', 'embed_pf1.weight', 'embed_pf2.weight', 'convs1.0.weight', 'convs1.0.bias']
pretrained_dict = {k:v for k,v in para_dict.items() if k in layers}
model_dict = RC_model.state_dict()
model_dict.update(pretrained_dict)
RC_model.load_state_dict(model_dict)
#check_grad(RC_model)
actions = list(actions)
label_train, label_test = actions[:len(self.train_pos)], actions[len(self.train_pos):]
data_size = len(self.train_pos) + len(self.train_neg)
x_ = self.train_pos + self.train_neg
y_ = label_train + [0]*len(self.train_neg)
trainloader = generate_trainloader(self.inputs, x_, y_, int(data_size/20)+1, shuf=True)
RC_parameters = filter(lambda p: p.requires_grad, RC_model.parameters())
RC_optimizer = optim.Adam(RC_parameters)
F1_sum = 0.0
weights = [1.0, 1.0]
for epoch in range(6):
RC_model.train()
for i, (x, y) in enumerate(trainloader, 0):
logits = calculate_logits(RC_model, x, self.max_sent)
loss = calculate_loss(logits, y, weights)
RC_optimizer.zero_grad()
loss.backward()
RC_optimizer.step()
if epoch > 0:
x_ = self.test_pos+self.test_neg
y_ = label_test+[0]*len(self.test_neg)
F1 = calculate_F1(RC_model, x_, y_, self.inputs, self.max_sent)
F1_sum += F1
return float(F1_sum/5)
def fix_number(self, actions, remove_probs):
boundry = len(self.train_pos)
actions_train, actions_test = deepcopy(actions[:boundry]), deepcopy(actions[boundry:])
prob_train, prob_test = deepcopy(remove_probs[:boundry]), deepcopy(remove_probs[boundry:])
if len(np.where(actions_train == 0)[0]) > self.train_fix_remove:
boundry_prob = np.sort(prob_train)[-self.train_fix_remove]
actions_train[np.where(prob_train < boundry_prob)[0]] = 1
if len(np.where(actions_test == 0)[0]) > self.test_fix_remove:
boundry_prob = np.sort(prob_test)[-self.test_fix_remove]
actions_test[np.where(prob_test < boundry_prob)[0]] = 1
return np.concatenate((actions_train, actions_test)), len(np.where(actions_train == 0)[0]), len(np.where(actions_test == 0)[0])
def reinforcement_learning(self):
PMD_batch = int(self.train_size/50) + 1
x_ = self.train_pos+self.test_pos
y_ = [1]*len(x_)
trainloader = generate_trainloader(self.inputs, x_, y_, PMD_batch, shuf=False)
actions_prev = np.array(y_)
F1_prev = self.retrain_relation_classifier(actions_prev)
rv = deepcopy(self.rv_initial)
for epoch in range(self.max_epoch):
actions_prob, actions = list(), list()
remove_probs = list()
for i, (x, _) in enumerate(trainloader, 0):
if i == 0:
rv_matrix = rv.repeat(x.size(0), 1)
else:
rv_matrix = torch.cat((rv_matrix, rv.repeat(x.size(0), 1)), 0)
actions_prob_, remove_probs_, cur_rv, actions_ = self.select_action(self.Policy_model, x, rv)
actions_prob += actions_prob_
actions += actions_
remove_probs += remove_probs_
cur_rv = 0.01 * Variable(cur_rv)
rv = (rv * i + cur_rv)/float(i+1)
actions_prob, actions = np.array(actions_prob), np.array(actions)
remove_probs = np.array(remove_probs)
if epoch == 0:
self.train_fix_remove = len(self.train_pos) - np.sum(actions_prob[:len(self.train_pos)])
self.test_fix_remove = len(self.test_pos) - np.sum(actions_prob[len(self.train_pos):])
train_remove_num, test_remove_num = self.train_fix_remove, self.test_fix_remove
else:
actions_prob, train_remove_num, test_remove_num = self.fix_number(actions_prob, remove_probs)
F1 = self.retrain_relation_classifier(actions_prob)
F1_criterion = self.retrain_relation_classifier(actions)
remove_actual_num, retain_actual_num = len(np.where(actions == 0)[0]), len(np.where(actions == 1)[0])
# sentece index
remove_prev, retain_prev = np.where(actions_prev == 0)[0], np.where(actions_prev == 1)[0]
remove_curr, retain_curr = np.where(actions_prob == 0)[0], np.where(actions_prob == 1)[0]
# remove part
same_part = list(set(remove_prev)&set(remove_curr))
diff_part_prev = list(set(remove_prev)-set(same_part))
diff_part_curr = list(set(remove_curr)-set(same_part))
if epoch != 0:
reward = (F1 - F1_prev) * self.reward_scale
else:
reward = -0.01
all_sents = np.array(self.train_pos + self.test_pos)
loss_1, loss_2 = Variable(torch.cuda.FloatTensor([0])), Variable(torch.cuda.FloatTensor([0]))
self.Policy_model.train()
if len(diff_part_prev) != 0:
x_prev = torch.LongTensor(self.inputs[all_sents[diff_part_prev]])
y_prev = [0]*len(diff_part_prev)
y_prev = LongTensor(y_prev)
logits_prev, _ = calculate_logits(self.Policy_model, x_prev, self.max_sent, rv_matrix=rv_matrix[diff_part_prev])
loss_1 = calculate_loss(logits_prev, y_prev)
loss_1 = (-reward) * loss_1
if len(diff_part_curr) != 0:
x_curr = torch.LongTensor(self.inputs[all_sents[diff_part_curr]])
y_curr = [0]*len(diff_part_curr)
y_curr = LongTensor(y_curr)
logits_curr, _ = calculate_logits(self.Policy_model, x_curr, self.max_sent, rv_matrix=rv_matrix[diff_part_curr])
loss_2 = calculate_loss(logits_curr, y_curr)
loss_2 = reward * loss_2
if reward > 0:
loss = self.alpha * loss_1 + loss_2
else:
loss = loss_1 + self.alpha * loss_2
print '[Epoch %d] Cur_F1: %.4f, Pre_F1: %.4f, reward: %.4f, remove_part:[%d, %d], diff_part: [%d, %d], F1_criterion: %.4f, remove_num: %d' \
%(epoch, F1, F1_prev, reward, train_remove_num, test_remove_num, len(diff_part_prev), len(diff_part_curr), F1_criterion, remove_actual_num)
if loss.data[0] != 0:
self.Policy_optimizer.zero_grad()
loss.backward()
self.Policy_optimizer.step()
else:
'NO LOSS!!!!!!!!!!!!!!!!!!!'
actions_prev = actions_prob
F1_prev = F1
if F1_criterion > self.F1_max:
self.F1_max = F1_criterion
self.epoch_best = epoch
self.actions_best = actions
self.Policy_best = deepcopy(self.Policy_model)
self.rv_best = rv
print 'MAX: epoch: %d, F1_criterion: %.4f' %(epoch, F1_criterion)
if epoch - self.epoch_best > 30:
break
print 'Early Stop!!'
if self.pos_size > 10000:
sents_remove_best, sents_retain_best = self.select_sentences(self.Policy_best, self.pos_data, self.rv_best)
#select_sentences(self, model, x, rv)
else:
sents_retain_best = list(all_sents[np.where(self.actions_best == 1)[0]])
sents_remove_best = list(all_sents[np.where(self.actions_best == 0)[0]])
print "***ACTUAL FINISH: Sent_remove: %d, Sent_retain: %d" %(len(sents_remove_best), len(sents_retain_best))
return sents_remove_best, sents_retain_best