-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensor.py
30 lines (27 loc) · 1.2 KB
/
tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#coding=utf-8
import argparse
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
def main(_):
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W)+b)
y_ = tf.placeholder(tf.float32,[None,10])
#联合熵
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
session = tf.InteractiveSession()
tf.initialize_all_variables().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
session.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print '使用tensorflow 的准确度为:',session.run(accuracy, feed_dict={x: mnist.test.images,y_: mnist.test.labels})
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='/tmp/data',help='Directory for storing data')
FLAGS = parser.parse_args()
tf.app.run()