forked from khoih-prog/TimerInterrupt_Generic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChange_Interval_HF.ino
205 lines (158 loc) · 7.63 KB
/
Change_Interval_HF.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/****************************************************************************************************************************
Change_Interval_HF.ino
For Arduino and Adadruit AVR 328(P) and 32u4 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/TimerInterrupt
Licensed under MIT license
Now we can use these new 16 ISR-based timers, while consuming only 1 hardware Timer.
Their independently-selected, maximum interval is practically unlimited (limited only by unsigned long miliseconds)
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
*****************************************************************************************************************************/
/*
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
*/
// These define's must be placed at the beginning before #include "TimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 0
#define _TIMERINTERRUPT_LOGLEVEL_ 3
#define USE_TIMER_1 true
#if ( defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || \
defined(ARDUINO_AVR_UNO) || defined(ARDUINO_AVR_NANO) || defined(ARDUINO_AVR_MINI) || defined(ARDUINO_AVR_ETHERNET) || \
defined(ARDUINO_AVR_FIO) || defined(ARDUINO_AVR_BT) || defined(ARDUINO_AVR_LILYPAD) || defined(ARDUINO_AVR_PRO) || \
defined(ARDUINO_AVR_NG) || defined(ARDUINO_AVR_UNO_WIFI_DEV_ED) || defined(ARDUINO_AVR_DUEMILANOVE) || defined(ARDUINO_AVR_FEATHER328P) || \
defined(ARDUINO_AVR_METRO) || defined(ARDUINO_AVR_PROTRINKET5) || defined(ARDUINO_AVR_PROTRINKET3) || defined(ARDUINO_AVR_PROTRINKET5FTDI) || \
defined(ARDUINO_AVR_PROTRINKET3FTDI) )
#define USE_TIMER_2 true
#warning Using Timer1, Timer2
#else
#define USE_TIMER_3 true
#warning Using Timer1, Timer3
#endif
#include "TimerInterrupt_Generic.h"
#if !defined(LED_BUILTIN)
#define LED_BUILTIN 13
#endif
#ifndef LED_BLUE
#define LED_BLUE 7
#endif
#define TIMER1_FREQUENCY 5000UL
#define TIMER_FREQUENCY 1000UL
volatile uint32_t Timer1Count = 0;
volatile uint32_t TimerCount = 0;
void printResult(uint32_t currTime)
{
Serial.print(F("Time = ")); Serial.print(currTime);
Serial.print(F(", Timer1Count = ")); Serial.print(Timer1Count);
Serial.print(F(", TimerCount = ")); Serial.println(TimerCount);
}
void TimerHandler1(void)
{
static bool toggle1 = false;
// Flag for checking to be sure ISR is working as Serial.print is not OK here in ISR
Timer1Count++;
//timer interrupt toggles pin LED_BUILTIN
digitalWrite(LED_BUILTIN, toggle1);
toggle1 = !toggle1;
}
void TimerHandler(void)
{
static bool toggle = false;
// Flag for checking to be sure ISR is working as Serial.print is not OK here in ISR
TimerCount++;
//timer interrupt toggles outputPin
digitalWrite(LED_BLUE, toggle);
toggle = !toggle;
}
void setup()
{
pinMode(LED_BUILTIN, OUTPUT);
pinMode(LED_BLUE, OUTPUT);
Serial.begin(115200);
while (!Serial);
Serial.print(F("\nStarting Change_Interval_HF on ")); Serial.println(BOARD_TYPE);
Serial.println(TIMER_INTERRUPT_VERSION);
Serial.println(TIMER_INTERRUPT_GENERIC_VERSION);
Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
// Select Timer 1-2 for UNO, 1-5 for MEGA, 1,3,4 for 16u4/32u4
// Timer 2 is 8-bit timer, only for higher frequency
// Timer 4 of 16u4 and 32u4 is 8/10-bit timer, only for higher frequency
ITimer1.init();
// Using ATmega328 used in UNO => 16MHz CPU clock ,
// For 16-bit timer 1, 3, 4 and 5, set frequency from 0.2385 to some KHz
// For 8-bit timer 2 (prescaler up to 1024, set frequency from 61.5Hz to some KHz
if (ITimer1.attachInterrupt(TIMER1_FREQUENCY, TimerHandler1))
{
Serial.print(F("Starting ITimer1 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer1. Select another freq. or timer"));
#if USE_TIMER_2
ITimer2.init();
if (ITimer2.attachInterrupt(TIMER_FREQUENCY, TimerHandler))
{
Serial.print(F("Starting ITimer2 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer2. Select another freq. or timer"));
#elif USE_TIMER_3
ITimer3.init();
if (ITimer3.attachInterrupt(TIMER_FREQUENCY, TimerHandler))
{
Serial.print(F("Starting ITimer3 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer3. Select another freq. or timer"));
#endif
}
#define CHECK_INTERVAL_MS 10000L
#define CHANGE_INTERVAL_MS 20000L
void loop()
{
static uint32_t lastTime = 0;
static uint32_t lastChangeTime = 0;
static uint32_t currTime;
static uint32_t multFactor = 0;
currTime = millis();
if (currTime - lastTime > CHECK_INTERVAL_MS)
{
printResult(currTime);
lastTime = currTime;
if (currTime - lastChangeTime > CHANGE_INTERVAL_MS)
{
//setInterval(unsigned long interval, timerCallback callback)
multFactor = (multFactor + 1) % 2;
// interval (in ms) and duration (in milliseconds). Duration = 0 or not specified => run indefinitely
// bool setInterval(unsigned long interval, timer_callback callback, unsigned long duration)
ITimer1.setFrequency(TIMER1_FREQUENCY / (multFactor + 1), TimerHandler1);
Serial.print(F("Changing Frequency, Timer1 = ")); Serial.println(TIMER1_FREQUENCY / (multFactor + 1));
#if USE_TIMER_2
ITimer2.setFrequency(TIMER_FREQUENCY / (multFactor + 1), TimerHandler);
Serial.print(F("Changing Frequency, Timer2 = ")); Serial.println(TIMER_FREQUENCY / (multFactor + 1));
#elif USE_TIMER_3
ITimer3.setFrequency(TIMER_FREQUENCY / (multFactor + 1), TimerHandler);
Serial.print(F("Changing Frequency, Timer3 = ")); Serial.println(TIMER_FREQUENCY / (multFactor + 1));
#endif
lastChangeTime = currTime;
}
}
}