forked from khoih-prog/TimerInterrupt_Generic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTimerInterruptTest.ino
234 lines (175 loc) · 7.52 KB
/
TimerInterruptTest.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/****************************************************************************************************************************
TimerInterruptTest.ino
For Arduino and Adadruit AVR 328(P) and 32u4 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/TimerInterrupt
Licensed under MIT license
Now we can use these new 16 ISR-based timers, while consuming only 1 hardware Timer.
Their independently-selected, maximum interval is practically unlimited (limited only by unsigned long miliseconds)
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
*****************************************************************************************************************************/
// These define's must be placed at the beginning before #include "TimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 2
#define _TIMERINTERRUPT_LOGLEVEL_ 0
#define USE_TIMER_1 true
#if ( defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || \
defined(ARDUINO_AVR_UNO) || defined(ARDUINO_AVR_NANO) || defined(ARDUINO_AVR_MINI) || defined(ARDUINO_AVR_ETHERNET) || \
defined(ARDUINO_AVR_FIO) || defined(ARDUINO_AVR_BT) || defined(ARDUINO_AVR_LILYPAD) || defined(ARDUINO_AVR_PRO) || \
defined(ARDUINO_AVR_NG) || defined(ARDUINO_AVR_UNO_WIFI_DEV_ED) || defined(ARDUINO_AVR_DUEMILANOVE) || defined(ARDUINO_AVR_FEATHER328P) || \
defined(ARDUINO_AVR_METRO) || defined(ARDUINO_AVR_PROTRINKET5) || defined(ARDUINO_AVR_PROTRINKET3) || defined(ARDUINO_AVR_PROTRINKET5FTDI) || \
defined(ARDUINO_AVR_PROTRINKET3FTDI) )
#define USE_TIMER_2 true
#warning Using Timer1, Timer2
#else
#define USE_TIMER_3 true
#warning Using Timer1, Timer3
#endif
#include "TimerInterrupt_Generic.h"
#if !defined(LED_BUILTIN)
#define LED_BUILTIN 13
#endif
#if USE_TIMER_1
void TimerHandler1(unsigned int outputPin = LED_BUILTIN)
{
static bool toggle1 = false;
#if (TIMER_INTERRUPT_DEBUG > 1)
Serial.print("ITimer1 called, millis() = "); Serial.println(millis());
#endif
//timer interrupt toggles pin LED_BUILTIN
digitalWrite(outputPin, toggle1);
toggle1 = !toggle1;
}
#endif
#if (USE_TIMER_2 || USE_TIMER_3)
void TimerHandler(unsigned int outputPin = LED_BUILTIN)
{
static bool toggle = false;
#if (TIMER_INTERRUPT_DEBUG > 1)
#if USE_TIMER_2
Serial.print("ITimer2 called, millis() = ");
#elif USE_TIMER_3
Serial.print("ITimer3 called, millis() = ");
#endif
Serial.println(millis());
#endif
//timer interrupt toggles outputPin
digitalWrite(outputPin, toggle);
toggle = !toggle;
}
#endif
unsigned int outputPin1 = LED_BUILTIN;
unsigned int outputPin = A0;
#define USING_LOOP_TEST false
#define TIMER1_INTERVAL_MS 1000
#define TIMER1_FREQUENCY (float) (1000.0f / TIMER1_INTERVAL_MS)
#define TIMER_INTERVAL_MS 2000
#define TIMER_FREQUENCY (float) (1000.0f / TIMER_INTERVAL_MS)
#if USING_LOOP_TEST
#define TIMER1_DURATION_MS (10UL * TIMER1_INTERVAL_MS)
#define TIMER_DURATION_MS (20UL * TIMER_INTERVAL_MS)
#else
#define TIMER1_DURATION_MS 0
#define TIMER_DURATION_MS 0
#endif
void setup()
{
pinMode(outputPin1, OUTPUT);
pinMode(outputPin, OUTPUT);
Serial.begin(115200);
while (!Serial);
Serial.print(F("\nStarting TimerInterruptTest on ")); Serial.println(BOARD_TYPE);
Serial.println(TIMER_INTERRUPT_VERSION);
Serial.println(TIMER_INTERRUPT_GENERIC_VERSION);
Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
#if USE_TIMER_1
// Timer0 is used for micros(), millis(), delay(), etc and can't be used
// Select Timer 1-2 for UNO, 0-5 for MEGA
// Timer 2 is 8-bit timer, only for higher frequency
ITimer1.init();
// Using ATmega328 used in UNO => 16MHz CPU clock ,
if (ITimer1.attachInterruptInterval(TIMER1_INTERVAL_MS, TimerHandler1, outputPin1, TIMER1_DURATION_MS))
{
Serial.print(F("Starting ITimer1 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer1. Select another freq. or timer"));
#endif
#if USE_TIMER_2
ITimer2.init();
if (ITimer2.attachInterruptInterval(TIMER_INTERVAL_MS, TimerHandler, outputPin, TIMER_DURATION_MS))
{
Serial.print(F("Starting ITimer2 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer2. Select another freq. or timer"));
#elif USE_TIMER_3
ITimer3.init();
if (ITimer3.attachInterruptInterval(TIMER_INTERVAL_MS, TimerHandler, outputPin, TIMER_DURATION_MS))
{
Serial.print(F("Starting ITimer3 OK, millis() = ")); Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer3. Select another freq. or timer"));
#endif
}
void loop()
{
#if USING_LOOP_TEST
static unsigned long lastTimer1 = 0;
static unsigned long lastTimer = 0;
static bool timerPaused = false;
static bool timerResumed = false;
if (millis() - lastTimer1 > TIMER1_DURATION_MS * 3)
{
#if USE_TIMER_2
if (millis() - lastTimer > TIMER_DURATION_MS * 3)
{
lastTimer = millis();
Serial.print(F("Re-enable ITimer2, millis() = ")); Serial.println(lastTimer);
ITimer2.reattachInterrupt(TIMER_DURATION_MS);
}
#elif USE_TIMER_3
if (millis() - lastTimer > TIMER_DURATION_MS * 3)
{
lastTimer = millis();
Serial.print(F("Re-enable ITimer3, millis() = ")); Serial.println(lastTimer);
ITimer3.reattachInterrupt(TIMER_DURATION_MS);
}
#endif
lastTimer1 = millis();
// try reinit timer
Serial.print(F("Re-enable ITimer1, millis() = ")); Serial.print(lastTimer1);
Serial.print(F(" count = ")); Serial.println(ITimer1.getCount() - 1);
ITimer1.reattachInterrupt(TIMER1_DURATION_MS);
timerPaused = false;
timerResumed = false;
}
else if ( !timerPaused && (millis() - lastTimer1 > TIMER1_DURATION_MS / 2) )
{
timerPaused = true;
Serial.print(F("Pause ITimer1, millis() = ")); Serial.print(millis());
Serial.print(F(" count = ")); Serial.println(ITimer1.getCount() - 1);
ITimer1.pauseTimer();
}
else if ( !timerResumed && (millis() - lastTimer1 > ( TIMER1_DURATION_MS * 3 ) / 2) )
{
timerResumed = true;
Serial.print(F("Resume ITimer1, millis() = ")); Serial.print(millis());
Serial.print(F(" count = ")); Serial.println(ITimer1.getCount() - 1);
ITimer1.resumeTimer();
}
#endif
}