forked from khoih-prog/TimerInterrupt_Generic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathISR_RPM_Measure.ino
168 lines (130 loc) · 5.15 KB
/
ISR_RPM_Measure.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/****************************************************************************************************************************
ISR_RPM_Measure.ino
For Arduino megaAVR ATMEGA4809-based boards (UNO WiFi Rev2, NANO_EVERY, etc. )
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/megaAVR_TimerInterrupt
Licensed under MIT license
Now with we can use these new 16 ISR-based timers, while consuming only 1 hwarware Timer.
Their independently-selected, maximum interval is practically unlimited (limited only by unsigned long miliseconds)
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
*****************************************************************************************************************************/
/* RPM Measuring uses high frequency hardware timer 1Hz == 1ms) to measure the time from of one rotation, in ms
then convert to RPM. One rotation is detected by reading the state of a magnetic REED SW or IR LED Sensor
Asssuming LOW is active.
For example: Max speed is 600RPM => 10 RPS => minimum 100ms a rotation. We'll use 80ms for debouncing
If the time between active state is less than 8ms => consider noise.
RPM = 60000 / (rotation time in ms)
We use interrupt to detect whenever the SW is active, set a flag
then use timer to count the time between active state
*/
// These define's must be placed at the beginning before #include "megaAVR_TimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 0
#define _TIMERINTERRUPT_LOGLEVEL_ 0
// Select USING_16MHZ == true for 16MHz to Timer TCBx => shorter timer, but better accuracy
// Select USING_8MHZ == true for 8MHz to Timer TCBx => shorter timer, but better accuracy
// Select USING_250KHZ == true for 250KHz to Timer TCBx => shorter timer, but better accuracy
// Not select for default 250KHz to Timer TCBx => longer timer, but worse accuracy
#define USING_16MHZ true
#define USING_8MHZ false
#define USING_250KHZ false
#define USE_TIMER_0 false
#define USE_TIMER_1 true
#define USE_TIMER_2 true
#define USE_TIMER_3 false
#include "TimerInterrupt_Generic.h"
#if !defined(LED_BUILTIN)
#define LED_BUILTIN 13
#endif
unsigned int interruptPin = 2;
#define TIMER1_INTERVAL_MS 1
#define DEBOUNCING_INTERVAL_MS 80
#define LOCAL_DEBUG 1
volatile unsigned long rotationTime = 0;
float RPM = 0.00;
float avgRPM = 0.00;
volatile int debounceCounter;
#define KAVG 100
volatile bool activeState = false;
void detectRotation(void)
{
activeState = true;
}
void TimerHandler1()
{
if ( activeState )
{
// Reset to prepare for next round of interrupt
activeState = false;
if (debounceCounter >= DEBOUNCING_INTERVAL_MS / TIMER1_INTERVAL_MS )
{
//min time between pulses has passed
RPM = (float) ( 60000.0f / ( rotationTime * TIMER1_INTERVAL_MS ) );
avgRPM = ( 2 * avgRPM + RPM) / 3,
#if (TIMER_INTERRUPT_DEBUG > 1)
Serial.print("RPM = "); Serial.print(avgRPM);
Serial.print(", rotationTime ms = "); Serial.println(rotationTime * TIMER1_INTERVAL_MS);
#endif
rotationTime = 0;
debounceCounter = 0;
}
else
debounceCounter++;
}
else
{
debounceCounter++;
}
if (rotationTime >= 5000)
{
// If idle, set RPM to 0, don't increase rotationTime
RPM = 0;
#if (TIMER_INTERRUPT_DEBUG > 1)
Serial.print("RPM = "); Serial.print(RPM); Serial.print(", rotationTime = "); Serial.println(rotationTime);
#endif
rotationTime = 0;
}
else
{
rotationTime++;
}
}
void setup()
{
Serial.begin(115200);
while (!Serial);
Serial.print(F("\nStarting ISR_RPM_Measure on ")); Serial.println(BOARD_NAME);
Serial.println(MEGA_AVR_TIMER_INTERRUPT_VERSION);
Serial.println(TIMER_INTERRUPT_GENERIC_VERSION);
Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
Serial.print(F("TCB Clock Frequency = "));
#if USING_16MHZ
Serial.println(F("16MHz for highest accuracy"));
#elif USING_8MHZ
Serial.println(F("8MHz for very high accuracy"));
#else
Serial.println(F("250KHz for lower accuracy but longer time"));
#endif
pinMode(LED_BUILTIN, OUTPUT);
pinMode(interruptPin, INPUT_PULLUP);
// Timer0 is used for micros(), millis(), delay(), etc and can't be used
// Select Timer 1-2 for UNO, 0-5 for MEGA
// Timer 2 is 8-bit timer, only for higher frequency
ITimer1.init();
// Using ATmega328 used in UNO => 16MHz CPU clock ,
if (ITimer1.attachInterruptInterval(TIMER1_INTERVAL_MS, TimerHandler1))
{
Serial.print(F("Starting ITimer1 OK, millis() = "));
Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer1. Select another freq. or timer"));
// Assumming the interruptPin will go LOW
attachInterrupt(digitalPinToInterrupt(interruptPin), detectRotation, FALLING);
}
void loop()
{
}