forked from Klipper3d/klipper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_motion.py
executable file
·427 lines (363 loc) · 14.2 KB
/
graph_motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#!/usr/bin/env python2
# Script to graph motion results
#
# Copyright (C) 2019-2020 Kevin O'Connor <[email protected]>
# Copyright (C) 2020 Dmitry Butyugin <[email protected]>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import optparse, datetime, math
import matplotlib
SEG_TIME = .000100
INV_SEG_TIME = 1. / SEG_TIME
SPRING_FREQ=35.0
DAMPING_RATIO=0.05
CONFIG_FREQ=40.0
CONFIG_DAMPING_RATIO=0.1
######################################################################
# Basic trapezoid motion
######################################################################
# List of moves: [(start_v, end_v, move_t), ...]
Moves = [
(0., 0., .100),
(6.869, 89.443, None), (89.443, 89.443, .120), (89.443, 17.361, None),
(19.410, 120., None), (120., 120., .130), (120., 5., None),
(0., 0., 0.01),
(-5., -100., None), (-100., -100., .100), (-100., -.5, None),
(0., 0., .200)
]
ACCEL = 3000.
MAX_JERK = ACCEL * 0.6 * SPRING_FREQ
def get_accel(start_v, end_v):
return ACCEL
def get_accel_jerk_limit(start_v, end_v):
effective_accel = math.sqrt(MAX_JERK * abs(end_v - start_v) / 6.)
return min(effective_accel, ACCEL)
# Standard constant acceleration generator
def get_acc_pos_ao2(rel_t, start_v, accel, move_t):
return (start_v + 0.5 * accel * rel_t) * rel_t
# Bezier curve "accel_order=4" generator
def get_acc_pos_ao4(rel_t, start_v, accel, move_t):
inv_accel_t = 1. / move_t
accel_div_accel_t = accel * inv_accel_t
accel_div_accel_t2 = accel_div_accel_t * inv_accel_t
c4 = -.5 * accel_div_accel_t2;
c3 = accel_div_accel_t;
c1 = start_v
return ((c4 * rel_t + c3) * rel_t * rel_t + c1) * rel_t
# Bezier curve "accel_order=6" generator
def get_acc_pos_ao6(rel_t, start_v, accel, move_t):
inv_accel_t = 1. / move_t
accel_div_accel_t = accel * inv_accel_t
accel_div_accel_t2 = accel_div_accel_t * inv_accel_t
accel_div_accel_t3 = accel_div_accel_t2 * inv_accel_t
accel_div_accel_t4 = accel_div_accel_t3 * inv_accel_t
c6 = accel_div_accel_t4;
c5 = -3. * accel_div_accel_t3;
c4 = 2.5 * accel_div_accel_t2;
c1 = start_v;
return (((c6 * rel_t + c5) * rel_t + c4)
* rel_t * rel_t * rel_t + c1) * rel_t
get_acc_pos = get_acc_pos_ao2
get_acc = get_accel
# Calculate positions based on 'Moves' list
def gen_positions():
out = []
start_d = start_t = t = 0.
for start_v, end_v, move_t in Moves:
if move_t is None:
move_t = abs(end_v - start_v) / get_acc(start_v, end_v)
accel = (end_v - start_v) / move_t
end_t = start_t + move_t
while t <= end_t:
rel_t = t - start_t
out.append(start_d + get_acc_pos(rel_t, start_v, accel, move_t))
t += SEG_TIME
start_d += get_acc_pos(move_t, start_v, accel, move_t)
start_t = end_t
return out
######################################################################
# Estimated motion with belt as spring
######################################################################
def estimate_spring(positions):
ang_freq2 = (SPRING_FREQ * 2. * math.pi)**2
damping_factor = 4. * math.pi * DAMPING_RATIO * SPRING_FREQ
head_pos = head_v = 0.
out = []
for stepper_pos in positions:
head_pos += head_v * SEG_TIME
head_a = (stepper_pos - head_pos) * ang_freq2
head_v += head_a * SEG_TIME
head_v -= head_v * damping_factor * SEG_TIME
out.append(head_pos)
return out
######################################################################
# List helper functions
######################################################################
MARGIN_TIME = 0.050
def time_to_index(t):
return int(t * INV_SEG_TIME + .5)
def indexes(positions):
drop = time_to_index(MARGIN_TIME)
return range(drop, len(positions)-drop)
def trim_lists(*lists):
keep = len(lists[0]) - time_to_index(2. * MARGIN_TIME)
for l in lists:
del l[keep:]
######################################################################
# Common data filters
######################################################################
# Generate estimated first order derivative
def gen_deriv(data):
return [0.] + [(data[i+1] - data[i]) * INV_SEG_TIME
for i in range(len(data)-1)]
# Simple average between two points smooth_time away
def calc_average(positions, smooth_time):
offset = time_to_index(smooth_time * .5)
out = [0.] * len(positions)
for i in indexes(positions):
out[i] = .5 * (positions[i-offset] + positions[i+offset])
return out
# Average (via integration) of smooth_time range
def calc_smooth(positions, smooth_time):
offset = time_to_index(smooth_time * .5)
weight = 1. / (2*offset - 1)
out = [0.] * len(positions)
for i in indexes(positions):
out[i] = sum(positions[i-offset+1:i+offset]) * weight
return out
# Time weighted average (via integration) of smooth_time range
def calc_weighted(positions, smooth_time):
offset = time_to_index(smooth_time * .5)
weight = 1. / offset**2
out = [0.] * len(positions)
for i in indexes(positions):
weighted_data = [positions[j] * (offset - abs(j-i))
for j in range(i-offset, i+offset)]
out[i] = sum(weighted_data) * weight
return out
# Weighted average (`h**2 - (t-T)**2`) of smooth_time range
def calc_weighted2(positions, smooth_time):
offset = time_to_index(smooth_time * .5)
weight = .75 / offset**3
out = [0.] * len(positions)
for i in indexes(positions):
weighted_data = [positions[j] * (offset**2 - (j-i)**2)
for j in range(i-offset, i+offset)]
out[i] = sum(weighted_data) * weight
return out
# Weighted average (`(h**2 - (t-T)**2)**2`) of smooth_time range
def calc_weighted4(positions, smooth_time):
offset = time_to_index(smooth_time * .5)
weight = 15 / (16. * offset**5)
out = [0.] * len(positions)
for i in indexes(positions):
weighted_data = [positions[j] * ((offset**2 - (j-i)**2))**2
for j in range(i-offset, i+offset)]
out[i] = sum(weighted_data) * weight
return out
# Weighted average (`(h - abs(t-T))**2 * (2 * abs(t-T) + h)`) of range
def calc_weighted3(positions, smooth_time):
offset = time_to_index(smooth_time * .5)
weight = 1. / offset**4
out = [0.] * len(positions)
for i in indexes(positions):
weighted_data = [positions[j] * (offset - abs(j-i))**2
* (2. * abs(j-i) + offset)
for j in range(i-offset, i+offset)]
out[i] = sum(weighted_data) * weight
return out
######################################################################
# Spring motion estimation
######################################################################
def calc_spring_raw(positions):
sa = (INV_SEG_TIME / (CONFIG_FREQ * 2. * math.pi))**2
ra = 2. * CONFIG_DAMPING_RATIO * math.sqrt(sa)
out = [0.] * len(positions)
for i in indexes(positions):
out[i] = (positions[i]
+ sa * (positions[i-1] - 2.*positions[i] + positions[i+1])
+ ra * (positions[i+1] - positions[i]))
return out
def calc_spring_double_weighted(positions, smooth_time):
offset = time_to_index(smooth_time * .25)
sa = (INV_SEG_TIME / (offset * CONFIG_FREQ * 2. * math.pi))**2
ra = 2. * CONFIG_DAMPING_RATIO * math.sqrt(sa)
out = [0.] * len(positions)
for i in indexes(positions):
out[i] = (positions[i]
+ sa * (positions[i-offset] - 2.*positions[i]
+ positions[i+offset])
+ ra * (positions[i+1] - positions[i]))
return calc_weighted(out, smooth_time=.5 * smooth_time)
######################################################################
# Input shapers
######################################################################
def get_zv_shaper():
df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
t_d = 1. / (CONFIG_FREQ * df)
A = [1., K]
T = [0., .5*t_d]
return (A, T, "ZV")
def get_zvd_shaper():
df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
t_d = 1. / (CONFIG_FREQ * df)
A = [1., 2.*K, K**2]
T = [0., .5*t_d, t_d]
return (A, T, "ZVD")
def get_mzv_shaper():
df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
K = math.exp(-.75 * CONFIG_DAMPING_RATIO * math.pi / df)
t_d = 1. / (CONFIG_FREQ * df)
a1 = 1. - 1. / math.sqrt(2.)
a2 = (math.sqrt(2.) - 1.) * K
a3 = a1 * K * K
A = [a1, a2, a3]
T = [0., .375*t_d, .75*t_d]
return (A, T, "MZV")
def get_ei_shaper():
v_tol = 0.05 # vibration tolerance
df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
t_d = 1. / (CONFIG_FREQ * df)
a1 = .25 * (1. + v_tol)
a2 = .5 * (1. - v_tol) * K
a3 = a1 * K * K
A = [a1, a2, a3]
T = [0., .5*t_d, t_d]
return (A, T, "EI")
def get_2hump_ei_shaper():
v_tol = 0.05 # vibration tolerance
df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
t_d = 1. / (CONFIG_FREQ * df)
V2 = v_tol**2
X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.)
a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X)
a2 = (.5 - a1) * K
a3 = a2 * K
a4 = a1 * K * K * K
A = [a1, a2, a3, a4]
T = [0., .5*t_d, t_d, 1.5*t_d]
return (A, T, "2-hump EI")
def get_3hump_ei_shaper():
v_tol = 0.05 # vibration tolerance
df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2)
K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df)
t_d = 1. / (CONFIG_FREQ * df)
K2 = K*K
a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol))
a2 = 0.25 * (1. - v_tol) * K
a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2
a4 = a2 * K2
a5 = a1 * K2 * K2
A = [a1, a2, a3, a4, a5]
T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d]
return (A, T, "3-hump EI")
def shift_pulses(shaper):
A, T, name = shaper
n = len(T)
ts = (sum([A[i] * T[i] for i in range(n)])) / sum(A)
for i in range(n):
T[i] -= ts
def calc_shaper(shaper, positions):
shift_pulses(shaper)
A = shaper[0]
inv_D = 1. / sum(A)
n = len(A)
T = [time_to_index(-shaper[1][j]) for j in range(n)]
out = [0.] * len(positions)
for i in indexes(positions):
out[i] = sum([positions[i + T[j]] * A[j] for j in range(n)]) * inv_D
return out
# Ideal values
SMOOTH_TIME = (2./3.) / CONFIG_FREQ
def gen_updated_position(positions):
#return calc_weighted(positions, 0.040)
#return calc_spring_double_weighted(positions, SMOOTH_TIME)
#return calc_weighted4(calc_spring_raw(positions), SMOOTH_TIME)
return calc_shaper(get_ei_shaper(), positions)
######################################################################
# Plotting and startup
######################################################################
def plot_motion():
# Nominal motion
positions = gen_positions()
velocities = gen_deriv(positions)
accels = gen_deriv(velocities)
# Updated motion
upd_positions = gen_updated_position(positions)
upd_velocities = gen_deriv(upd_positions)
upd_accels = gen_deriv(upd_velocities)
# Estimated position with model of belt as spring
spring_orig = estimate_spring(positions)
spring_upd = estimate_spring(upd_positions)
spring_diff_orig = [n-o for n, o in zip(spring_orig, positions)]
spring_diff_upd = [n-o for n, o in zip(spring_upd, positions)]
head_velocities = gen_deriv(spring_orig)
head_accels = gen_deriv(head_velocities)
head_upd_velocities = gen_deriv(spring_upd)
head_upd_accels = gen_deriv(head_upd_velocities)
# Build plot
times = [SEG_TIME * i for i in range(len(positions))]
trim_lists(times, velocities, accels,
upd_velocities, upd_velocities, upd_accels,
spring_diff_orig, spring_diff_upd,
head_velocities, head_upd_velocities,
head_accels, head_upd_accels)
fig, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(nrows=3, sharex=True)
ax1.set_title("Simulation: resonance freq=%.1f Hz, damping_ratio=%.3f,\n"
"configured freq=%.1f Hz, damping_ratio = %.3f"
% (SPRING_FREQ, DAMPING_RATIO, CONFIG_FREQ
, CONFIG_DAMPING_RATIO))
ax1.set_ylabel('Velocity (mm/s)')
ax1.plot(times, upd_velocities, 'r', label='New Velocity', alpha=0.8)
ax1.plot(times, velocities, 'g', label='Nominal Velocity', alpha=0.8)
ax1.plot(times, head_velocities, label='Head Velocity', alpha=0.4)
ax1.plot(times, head_upd_velocities, label='New Head Velocity', alpha=0.4)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1.legend(loc='best', prop=fontP)
ax1.grid(True)
ax2.set_ylabel('Acceleration (mm/s^2)')
ax2.plot(times, upd_accels, 'r', label='New Accel', alpha=0.8)
ax2.plot(times, accels, 'g', label='Nominal Accel', alpha=0.8)
ax2.plot(times, head_accels, alpha=0.4)
ax2.plot(times, head_upd_accels, alpha=0.4)
ax2.set_ylim([-5. * ACCEL, 5. * ACCEL])
ax2.legend(loc='best', prop=fontP)
ax2.grid(True)
ax3.set_ylabel('Deviation (mm)')
ax3.plot(times, spring_diff_upd, 'r', label='New', alpha=0.8)
ax3.plot(times, spring_diff_orig, 'g', label='Nominal', alpha=0.8)
ax3.grid(True)
ax3.legend(loc='best', prop=fontP)
ax3.set_xlabel('Time (s)')
return fig
def setup_matplotlib(output_to_file):
global matplotlib
if output_to_file:
matplotlib.use('Agg')
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
import matplotlib.ticker
def main():
# Parse command-line arguments
usage = "%prog [options]"
opts = optparse.OptionParser(usage)
opts.add_option("-o", "--output", type="string", dest="output",
default=None, help="filename of output graph")
options, args = opts.parse_args()
if len(args) != 0:
opts.error("Incorrect number of arguments")
# Draw graph
setup_matplotlib(options.output is not None)
fig = plot_motion()
# Show graph
if options.output is None:
matplotlib.pyplot.show()
else:
fig.set_size_inches(8, 6)
fig.savefig(options.output)
if __name__ == '__main__':
main()