-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamic_vit.py
392 lines (315 loc) · 16.6 KB
/
dynamic_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from torchsummary import summary
import numpy as np
from collections import OrderedDict
from timm.models.vision_transformer import Mlp, PatchEmbed, _cfg
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C //
self.num_heads).permute(2, 0, 3, 1, 4)
# Dimension after permute: (3, B, self.num_heads, N, C // self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # (B, num_heads, N, head_dim)
q = q * self.scale # q / sqrt(d) where d is head_dim
attn = (q @ k.transpose(-2, -1)) # (B, num_heads, N, N)
# softmax along the last dimension, which is the sequence length dim (N) a.k.a number of tokens
attn = attn.softmax(dim=-1)
# dropout layer applied to the attention weights.
attn = self.attn_drop(attn)
# (B, num_heads, N, head_dim) -> (B, N, num_heads, head_dim) -> (B, N, C)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
# applies a linear transformation to each token, resulting in a tensor of the same shape (B, N, C).
x = self.proj(x)
# applies dropout to the output of the linear projection.
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, Attention_block=Attention, Mlp_block=Mlp, init_values=1e-4):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Layer_scale_init_Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, Attention_block=Attention, Mlp_block=Mlp, init_values=1e-4):
super().__init__()
self.norm1 = norm_layer(dim)
self.norm11 = norm_layer(dim)
self.attn = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.attn1 = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.norm21 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.mlp1 = Mlp_block(
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.gamma_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True)
self.gamma_1_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True)
self.gamma_2_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True)
def forward(self, x):
x = x + self.drop_path(self.gamma_1*self.attn(self.norm1(x))) + \
self.drop_path(self.gamma_1_1 * self.attn1(self.norm11(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) + \
self.drop_path(self.gamma_2_1 * self.mlp1(self.norm21(x)))
return x
class Block_paralx2(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, Attention_block=Attention, Mlp_block=Mlp, init_values=1e-4):
super().__init__()
self.norm1 = norm_layer(dim)
self.norm11 = norm_layer(dim)
self.attn = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.attn1 = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.norm21 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.mlp1 = Mlp_block(
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x))) + \
self.drop_path(self.attn1(self.norm11(x)))
x = x + self.drop_path(self.mlp(self.norm2(x))) + \
self.drop_path(self.mlp1(self.norm21(x)))
return x
class hMLP_stem(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=nn.SyncBatchNorm):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * \
(img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = torch.nn.Sequential(*[nn.Conv2d(in_chans, embed_dim//4, kernel_size=4, stride=4),
norm_layer(embed_dim//4),
nn.GELU(),
nn.Conv2d(
embed_dim//4, embed_dim//4, kernel_size=2, stride=2),
norm_layer(embed_dim//4),
nn.GELU(),
nn.Conv2d(
embed_dim//4, embed_dim, kernel_size=2, stride=2),
norm_layer(embed_dim),
])
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class vit_models(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, global_pool=None,
block_layers=Block,
Patch_layer=PatchEmbed, act_layer=nn.GELU,
Attention_block=Attention, Mlp_block=Mlp,
dpr_constant=True, init_scale=1e-4,
mlp_ratio_clstk=4.0, **kwargs):
super().__init__()
self.dropout_rate = drop_rate
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim
self.patch_embed = Patch_layer(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
dpr = [drop_path_rate for i in range(depth)]
self.blocks = nn.ModuleList([
block_layers(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=0.0, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
act_layer=act_layer, Attention_block=Attention_block, Mlp_block=Mlp_block, init_values=init_scale)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.feature_info = [
dict(num_chs=embed_dim, reduction=0, module='head')]
self.head = nn.Linear(
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def get_num_layers(self):
return len(self.blocks)
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0] # Get the batch size from the input tensor
# Apply patch embedding to the input image, converting it to a sequence of patch tokens
x = self.patch_embed(x)
# Expand the class token to match the batch size
cls_tokens = self.cls_token.expand(B, -1, -1)
# Add positional embeddings to the patch tokens to retain spatial information
x = x + self.pos_embed
# Concatenate the class token to the beginning of the token sequence
x = torch.cat((cls_tokens, x), dim=1)
# Pass the token sequence through each transformer block
for i, blk in enumerate(self.blocks):
x = blk(x)
# Apply layer normalization to the output of the last transformer block
x = self.norm(x)
# Return only the class token's representation for classification
return x[:, 0]
def forward(self, x):
# Compute the forward pass through the transformer to get the feature representation
x = self.forward_features(x)
# Apply dropout to the feature representation if a dropout rate is specified
if self.dropout_rate:
x = F.dropout(x, p=float(self.dropout_rate),
training=self.training)
# Pass the feature representation through the classification head to get the final output
x = self.head(x)
# Return the final class scores
return x
class vit_register_dynamic(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, global_pool=None,
block_layers=Block, Patch_layer=PatchEmbed, act_layer=nn.GELU,
Attention_block=Attention, Mlp_block=Mlp, dpr_constant=True, init_scale=1e-4,
mlp_ratio_clstk=4.0, num_register_tokens=0, reg_pos=None, cls_pos=None, **kwargs):
super().__init__()
self.reg_pos = reg_pos
self.cls_pos = cls_pos
self.dropout_rate = drop_rate
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim
self.patch_embed = Patch_layer(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
self.num_patches = self.patch_embed.num_patches
self.num_register_tokens = num_register_tokens
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, self.num_patches, embed_dim))
self.register_tokens = nn.Parameter(
torch.zeros(1, self.num_register_tokens, embed_dim))
dpr = [drop_path_rate for i in range(depth)]
self.blocks = nn.ModuleList([
block_layers(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=0.0, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
act_layer=act_layer, Attention_block=Attention_block, Mlp_block=Mlp_block, init_values=init_scale)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.feature_info = [
dict(num_chs=embed_dim, reduction=0, module='head')]
self.head = nn.Linear(
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
trunc_normal_(self.register_tokens, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'reg_tokens'} # Add register tokens
def get_classifier(self):
return self.head
def get_num_layers(self):
return len(self.blocks)
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def prepare_tokens(self, x):
B = x.shape[0] # Get the batch size from the input tensor
x = self.patch_embed(x) # Apply patch embedding to the input image
# Initialize cls_tokens and register_tokens placeholders
cls_tokens = self.cls_token.expand(B, -1, -1)
register_tokens = self.register_tokens.expand(
B, -1, -1) if self.register_tokens is not None else None
# Add positional embeddings to the patch tokens
# x = x + self.pos_embed[:, :self.num_patches, :]
x = x + self.pos_embed
return x, cls_tokens, register_tokens
def forward_features(self, x, cls_pos=None, reg_pos=None):
x, cls_tokens, register_tokens = self.prepare_tokens(x)
# Pass the token sequence through each transformer block
for i, blk in enumerate(self.blocks):
if i == reg_pos and register_tokens is not None:
x = torch.cat((x, register_tokens), dim=1)
if i == cls_pos:
x = torch.cat((cls_tokens, x), dim=1)
x = blk(x)
# Apply layer normalization to the output of the last transformer block
x = self.norm(x)
# Extract the class token if it's been added in the transformer blocks
# if cls_pos is not None and cls_pos < len(self.blocks):
x_cls = x[:, 0]
x_regs = x[:, -self.num_register_tokens:] if self.num_register_tokens > 0 else None
return x_cls, x_regs
def forward(self, x):
# Compute the forward pass through the transformer
x_cls, x_regs = self.forward_features(x, self.cls_pos, self.reg_pos)
if self.dropout_rate:
x_cls = F.dropout(x_cls, p=float(
self.dropout_rate), training=self.training)
# Pass the class token representation through the classification head
x_cls = self.head(x_cls)
return x_cls # Return the final class scores