-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainable_cls_reg.py
267 lines (213 loc) · 10.7 KB
/
trainable_cls_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from functools import partial
from torchsummary import summary
import numpy as np
from collections import OrderedDict
from custom_summary import custom_summary
from timm.models.vision_transformer import Mlp, PatchEmbed, _cfg
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
class TrainableAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn) # (B, num_heads, N, N)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn # Return both x and attention
class TrainableBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, Attention_block=TrainableAttention, Mlp_block=Mlp, init_values=1e-4):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
y, attn = self.attn(self.norm1(x))
if return_attention: # if return_attention is true, only return the attn
return attn
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class TrainableVitRegisterDynamicViz(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, global_pool=None,
block_layers=TrainableBlock, Patch_layer=PatchEmbed, act_layer=nn.GELU,
Attention_block=TrainableAttention, Mlp_block=Mlp, dpr_constant=True, init_scale=1e-4,
mlp_ratio_clstk=4.0, num_register_tokens=4, reg_pos=None, cls_pos=None, **kwargs):
super().__init__()
self.reg_pos = reg_pos
self.cls_pos = cls_pos
self.patch_size = patch_size
self.depth = depth
self.dropout_rate = drop_rate
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim
self.patch_embed = Patch_layer(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
self.num_patches = self.patch_embed.num_patches
self.num_register_tokens = num_register_tokens
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, self.num_patches, embed_dim))
self.register_tokens = nn.Parameter(
torch.zeros(1, self.num_register_tokens, embed_dim))
dpr = [drop_path_rate for i in range(depth)]
self.blocks = nn.ModuleList([
block_layers(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=0.0, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
act_layer=act_layer, Attention_block=Attention_block, Mlp_block=Mlp_block, init_values=init_scale)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.feature_info = [
dict(num_chs=embed_dim, reduction=0, module='head')]
self.head = nn.Linear(
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
trunc_normal_(self.register_tokens, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'reg_tokens'} # Add register tokens
def get_classifier(self):
return self.head
def get_num_layers(self):
return len(self.blocks)
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def prepare_tokens(self, x):
B = x.shape[0] # Get the batch size from the input tensor
x = self.patch_embed(x) # Apply patch embedding to the input image
# Initialize cls_tokens and register_tokens placeholders
cls_tokens = self.cls_token.expand(B, -1, -1)
register_tokens = self.register_tokens.expand(
B, -1, -1) if self.register_tokens is not None else None
# Add positional embeddings to the patch tokens
# x = x + self.pos_embed[:, :self.num_patches, :]
x = x + self.pos_embed
return x, cls_tokens, register_tokens
def forward_features(self, x, cls_pos=None, reg_pos=None):
x, cls_tokens, register_tokens = self.prepare_tokens(x)
# Pass the token sequence through each transformer block
for i, blk in enumerate(self.blocks):
if i == reg_pos and register_tokens is not None:
x = torch.cat((x, register_tokens), dim=1)
if i == cls_pos:
x = torch.cat((cls_tokens, x), dim=1)
x = blk(x)
x = self.norm(x)
x_cls = x[:, 0]
x_regs = x[:, -self.num_register_tokens:] if self.num_register_tokens > 0 else None
return x_cls, x_regs
def forward(self, x):
x_cls, x_regs = self.forward_features(x, self.cls_pos, self.reg_pos)
if self.dropout_rate:
x_cls = F.dropout(x_cls, p=float(self.dropout_rate), training=self.training)
x_cls = self.head(x_cls)
return x_cls
def get_last_selfattention(self, x):
x, cls_tokens, reg_tokens = self.prepare_tokens(x)
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
# return attention of the last block
return blk(x, return_attention=True)
def get_selfattention(self, x, layer): # Only cls token
cls_pos = self.cls_pos
reg_pos = self.reg_pos
num_reg = self.num_register_tokens
x, cls_tokens, reg_tokens = self.prepare_tokens(x)
for i, blk in enumerate(self.blocks):
if i == reg_pos and reg_tokens is not None:
x = torch.cat((x, reg_tokens), dim=1)
if i == cls_pos:
x = torch.cat((cls_tokens, x), dim=1)
if i == layer:
# Get the attention map from the specified layer
attn = blk(x, return_attention=True) # (1, 12, 197, 197)
break
x = blk(x)
return attn
def get_register_token_attention(self, x, layer):
cls_pos = self.cls_pos
reg_pos = self.reg_pos
num_reg = self.num_register_tokens
x, cls_tokens, reg_tokens = self.prepare_tokens(x)
for i, blk in enumerate(self.blocks):
if i == reg_pos and reg_tokens is not None:
x = torch.cat((x, reg_tokens), dim=1)
if i == cls_pos:
x = torch.cat((cls_tokens, x), dim=1)
if i == layer:
# Get the attention map from the specified layer
attn = blk(x, return_attention=True)
reg_attn = attn[:, :, -num_reg:, :-num_reg] # Extract attention from register tokens to patch tokens
break
x = blk(x)
return reg_attn
def get_attention_map(self, x, layer): # Both cls and reg tokens
cls_pos = self.cls_pos
reg_pos = self.reg_pos
num_reg = self.num_register_tokens
if layer < reg_pos:
raise ValueError(f"Cannot access register tokens at layer {layer} since they are added at layer {reg_pos}")
x, cls_tokens, reg_tokens = self.prepare_tokens(x)
for i, blk in enumerate(self.blocks):
if i == cls_pos:
x = torch.cat((cls_tokens, x), dim=1)
if i == reg_pos and reg_tokens is not None:
x = torch.cat((x, reg_tokens), dim=1)
if i == layer:
# Get the attention map from the specified layer
attn = blk(x, return_attention=True) # [1, 12, 201, 201]
# Attention from cls token to patch tokens [1, 12, 1, 196]
cls_attn = attn[:, :, 0, 1:self.num_patches+1] # self.num_patches+1 because it's exclusive of end index
# Attention from register tokens to patch tokens
reg_attn_list = [attn[:, :, -num_reg + i, 1:self.num_patches+1] for i in range(num_reg)] # List of attention maps for each register token
break
return cls_attn, reg_attn_list
model = TrainableVitRegisterDynamicViz(
img_size=224, patch_size=16, in_chans=3, num_classes=10, embed_dim=384, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=torch.nn.LayerNorm, global_pool=None,
block_layers=TrainableBlock, Patch_layer=PatchEmbed, act_layer=torch.nn.GELU,
Attention_block=TrainableAttention, Mlp_block=Mlp, dpr_constant=True, init_scale=1e-4,
mlp_ratio_clstk=4.0, num_register_tokens=4, cls_pos=0, reg_pos=0,
)
# Print the model summary
custom_summary(model, (3, 224, 224))